Foreword |
|
V | |
Preface |
|
VII | |
Acknowledgements |
|
IX | |
1 Introduction |
|
1 | (34) |
|
|
2 | (2) |
|
1.2 Environmental Systems |
|
|
4 | (2) |
|
|
6 | (9) |
|
1.3.1 The Role of Tides Within Environmental Systems |
|
|
6 | (3) |
|
1.3.2 Different Modeling Approaches |
|
|
9 | (6) |
|
|
15 | (9) |
|
1.4.1 Historical Development |
|
|
15 | (5) |
|
1.4.2 Quasi-realistic Climate Models |
|
|
20 | (1) |
|
1.4.3 Societal Relevance of Climate |
|
|
21 | (3) |
|
1.5 Quasi-realistic Computer Models |
|
|
24 | (2) |
|
|
26 | (4) |
|
|
30 | (5) |
2 Computer Models |
|
35 | (20) |
|
|
36 | (6) |
|
2.1.1 The Fundamental Laws |
|
|
36 | (1) |
|
2.1.2 The Closure Problems |
|
|
36 | (4) |
|
|
40 | (1) |
|
2.1.4 Approximations and Representations |
|
|
41 | (1) |
|
|
42 | (2) |
|
|
44 | (2) |
|
2.4 Models as Dynamical Systems |
|
|
46 | (2) |
|
2.5 Models as Stochastic Systems |
|
|
48 | (2) |
|
|
50 | (5) |
|
2.6.1 Limit of Predictability |
|
|
51 | (1) |
|
2.6.2 Forecast of the First Kind |
|
|
52 | (1) |
|
2.6.3 Forecast of the Second Kind |
|
|
53 | (2) |
3 Models and Data |
|
55 | (14) |
|
|
55 | (7) |
|
3.1.1 Validation as a Philosophical Problem |
|
|
56 | (1) |
|
3.1.2 Some Common Approaches |
|
|
57 | (2) |
|
3.1.3 Validation as a Statistical Problem |
|
|
59 | (3) |
|
|
62 | (2) |
|
|
64 | (5) |
4 The Dynamics of Tides and Climate |
|
69 | (22) |
|
|
70 | (8) |
|
4.1.1 The Nature of Tides |
|
|
70 | (1) |
|
4.1.2 Laplace Tidal Equations |
|
|
71 | (2) |
|
4.1.3 Tidal Loading and Self-attraction |
|
|
73 | (2) |
|
4.1.4 The Tidal Inlet Problem |
|
|
75 | (3) |
|
|
78 | (13) |
|
4.2.1 Components and Processes |
|
|
78 | (2) |
|
|
80 | (3) |
|
4.2.3 The Primitive Equations |
|
|
83 | (2) |
|
4.2.4 Fundamental Cognitive Models |
|
|
85 | (2) |
|
4.2.5 Natural and Anthropogenic Climate Variability |
|
|
87 | (4) |
5 Modeling in Applied Environmental Sciences-Forecasting, Analysis and Scenarios |
|
91 | (64) |
|
5.1 Operational Forecasts |
|
|
91 | (26) |
|
5.1.1 Forecast Versus Prediction |
|
|
91 | (2) |
|
5.1.2 Tide and Storm Surge Forecasts |
|
|
93 | (1) |
|
|
94 | (8) |
|
5.1.4 El Nino Southern Oscillation Forecasts |
|
|
102 | (8) |
|
5.1.5 The Skill of Forecasts |
|
|
110 | (4) |
|
5.1.6 Post-processing Forecasts |
|
|
114 | (3) |
|
|
117 | (27) |
|
|
118 | (9) |
|
5.2.2 Reconstruction of Regional Weather |
|
|
127 | (5) |
|
5.2.3 Transport and Deposition of Lead in Europe |
|
|
132 | (6) |
|
5.2.4 Altimeter Data and the Tides |
|
|
138 | (6) |
|
|
144 | (8) |
|
5.4 Secondary Applications |
|
|
152 | (3) |
6 Modeling in Fundamental Environmental Sciences - Simulation and Hypothesis Testing |
|
155 | (36) |
|
|
155 | (16) |
|
6.1.1 Tides and the Coriolis Force |
|
|
157 | (1) |
|
6.1.2 The Sun and the Late Maunder Minimum |
|
|
158 | (4) |
|
6.1.3 The Stochastic Climate Model at Work |
|
|
162 | (4) |
|
6.1.4 Validating Stommel's Theory of the Thermohaline Circulation |
|
|
166 | (3) |
|
6.1.5 Validating Theories of Alpine Lee Cyclogenesis |
|
|
169 | (2) |
|
6.2 Specification of Reduced Models |
|
|
171 | (9) |
|
6.2.1 Heat Flux and Sea Surface Temperature |
|
|
172 | (6) |
|
6.2.2 A Conceptual Zero-dimensional Climate Model |
|
|
178 | (2) |
|
6.3 Simulating the Unobservable |
|
|
180 | (11) |
|
6.3.1 Circulation Regimes in the North Sea |
|
|
181 | (1) |
|
6.3.2 Multimodality in Atmospheric Dynamics |
|
|
182 | (2) |
|
|
184 | (7) |
7 Issues and Conclusions |
|
191 | (10) |
|
7.1 Reduction of Information |
|
|
192 | (1) |
|
|
193 | (1) |
|
|
194 | (2) |
|
7.4 Model Builder and Model User |
|
|
196 | (1) |
|
7.5 Social and Psychological Conditioning |
|
|
197 | (1) |
|
|
198 | (3) |
Appendices |
|
|
|
201 | (32) |
|
A.1 The Balance Equations |
|
|
201 | (3) |
|
|
201 | (2) |
|
|
203 | (1) |
|
|
203 | (1) |
|
A.2 Thermodynamic Specification |
|
|
204 | (2) |
|
A.3 The Phenomenological Flux Laws |
|
|
206 | (3) |
|
|
209 | (1) |
|
A.5 A Closer Look at the Balance Equations |
|
|
210 | (6) |
|
|
211 | (1) |
|
|
212 | (3) |
|
A.5.3 Photochemical Reactions |
|
|
215 | (1) |
|
A.6 Reynolds Decomposition |
|
|
216 | (3) |
|
A.7 Parameterization of Interior Fluxes |
|
|
219 | (4) |
|
|
219 | (2) |
|
|
221 | (2) |
|
A.8 Parameterization of Boundary Layer Fluxes |
|
|
223 | (4) |
|
A.8.1 The Constant Flux Layer |
|
|
223 | (2) |
|
A.8.2 Vie Planetary Boundary Layer |
|
|
225 | (2) |
|
|
227 | (3) |
|
A.9.1 Anelastic Approximation |
|
|
227 | (2) |
|
A.9.2 Shallow Water Approximation |
|
|
229 | (1) |
|
|
230 | (3) |
|
A.10.1 Vertical Coordinates |
|
|
231 | (1) |
|
|
231 | (2) |
|
|
233 | (18) |
|
|
233 | (3) |
|
B.2 Partial Differential Equations |
|
|
236 | (8) |
|
|
237 | (2) |
|
|
239 | (1) |
|
B.2.3 Hyperbolic Problems |
|
|
240 | (4) |
|
|
244 | (1) |
|
|
245 | (4) |
|
B.5 Finite Element Models |
|
|
249 | (2) |
|
|
251 | (24) |
|
C.1 Random Variables and Processes |
|
|
252 | (7) |
|
C.1.1 Probability Function |
|
|
252 | (3) |
|
C.1.2 Bivariate Random Variables |
|
|
255 | (1) |
|
|
256 | (3) |
|
C.2 Characteristic Parameters |
|
|
259 | (6) |
|
|
259 | (2) |
|
C.2.2 Empirical Orthogonal Functions |
|
|
261 | (2) |
|
C.2.3 Decomposition of Variance |
|
|
263 | (1) |
|
|
264 | (1) |
|
|
265 | (10) |
|
C.3.1 Basic Aspects of Estimation |
|
|
265 | (3) |
|
C.3.2 Estimation of Auto-covariance Functions |
|
|
268 | (1) |
|
C.3.3 Estimation of Spectra |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
271 | (4) |
|
|
275 | (10) |
|
|
276 | (1) |
|
|
276 | (5) |
|
|
277 | (2) |
|
D.2.2 Optimal or Statistical Interpolation |
|
|
279 | (1) |
|
|
279 | (1) |
|
D.2.4 Blending and Direct Insertion |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (4) |
|
|
281 | (1) |
|
|
282 | (1) |
|
D.3.3 Parameter Estimation |
|
|
283 | (2) |
References |
|
285 | (10) |
Index |
|
295 | |