Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computer Safety, Reliability, and Security: 42nd International Conference, SAFECOMP 2023, Toulouse, France, September 20-22, 2023, Proceedings

Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 14181
  • Izdošanas datums: 10-Sep-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031409233
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 14181
  • Izdošanas datums: 10-Sep-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031409233

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 42nd International Conference on Computer Safety, Reliability and Security, SAFECOMP 2023, which took place in Toulouse, France, in September 2023.

The 20 full papers included in this volume were carefully reviewed and selected from 100 submissions. They were organized in topical sections as follows: Safety assurance; software testing and reliability; neural networks robustness and monitoring; model-based security and threat analysis; safety of autonomous driving; security engineering; AI safety; and neural networks and testing.

Safety Assurance.- Assurance Case Arguments in the Large CERN LHC
Machine Protection System.- Identifying Run-time Monitoring Requirements for
Autonomous Systems through the Analysis of Safety Arguments.- Redesigning
Medical Device Assurance: Separating Technological and Clinical Assurance
Cases.- Software Testing & Reliability.- A Cognitive Framework for Modeling
Coincident Software Faults: An Experimental Study.- A Taxonomy of Software
Defect Forms for Certification Tests in Aviation Industry.- Constraint-guided
Test Execution Scheduling: An Experience Report at ABB Robotics.- Neural
Networks Robustness & Monitoring.- A low-cost strategic monitoring approach
for scalable and interpretable error detection in deep neural networks.- Are
Transformers More Robust? Towards Exact Robustness Verification for
Transformers.- Model-based Security and Threat Analysis.- Model-based
Generation of Attack-Fault Trees.- MBTA: A Model-Based Threat Analysis
approach for software architectures.- Attribute Repair for Threat
Prevention.- Safety of Autonomous Driving.- Probabilistic Spatial Relations
for Monitoring Behavior of Road Users.- Concept and metamodel to support
cross-domain safety analysis for ODD expansion of autonomous systems.-
Security Engineering.- Pattern-Based Information Flow Control for
Safety-Critical On-Chip Systems.- From Standard to Practice: Towards ISA/IEC
62443-conform Public Key Infrastructures.- AI Safety.- The Impact of Training
Data Shortfalls on Safety of AI-based Clinical Decision Support Systems.-
Data-centric Operational Design Domain Characterization for Machine
Learning-based Aeronautical Products.- Online Quantization Adaptation for
Fault-Tolerant Neural Network Inference.- Neural Networks & Testing.-
Evaluation of Parameter-based Attacks against Embedded Neural Networks with
Laser Injection.- Towards Scenario-based Safety Validation for Autonomous
Trains with Deep Generative Models.