nav atļauts
nav atļauts
Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).
Nepieciešamā programmatūra
Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)
Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)
Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.
W24 - Advances in Image Manipulation Workshop and Challenges.- AIM 2020 Challenge on Efficient Super-Resolution: Methods and Results.- Residual Feature Distillation Network for Lightweight Image Super-Resolution. -Efficient Image Super-Resolution using Pixel Attention.- LarvaNet: Hierarchical Super-Resolution via Multi-exit Architecture.- Efficient Super-Resolution using MobileNetV3.- Multi-Attention Based Ultra Lightweight Image Super-Resolution.- Adaptive Hybrid Composition based Super-Resolution Network via Fine-grained Channel Pruning.- IdleSR: E cient Super-Resolution Network with Multi-Scale IdleBlocks.- IM 2020 Challenge on Learned Image Signal Processing Pipeline.- EEDNet: Enhanced Encoder Decoder Network for AutoISP.- AWNet: Attentive Wavelet Network for ImageISP.- PyNET-CA: Enhanced PyNET with Channel Attention for End-to-end Mobile Image Signal Processing.- AIM 2020 Challenge on Rendering Realistic Bokeh.- BGGAN: Bokeh-Glass Generative Adversarial Network for Rendering Realistic Bokeh.- Bokeh Rendering from Defocus Estimation.- Human Motion Transfer from Poses in the Wild.- FamilyGAN: Generating Kin Face Images using Generative Adversarial Networks.- Genetic-GAN: Synthesizing images between two domains by genetic crossover.- GIA-Net: Global Information Aware Network for Low-light Imaging.- Flexible Example-based Image Enhancement with Task Adaptive Global Feature Self-Guided Network.- A Benchmark for Burst Color Constancy.- Noise-Aware Merging of High Dynamic Range Image Stacks without Camera Calibration.- AIM 2020 Challenge on Real Image Super-Resolution: Methods and Results.- Real Image Super Resolution via Heterogeneous Model Ensemble using GP-NAS.- Enhanced Adaptive Dense Connection Single Image Super-Resolution.- Self-Calibrated Attention Neural Network for Real-World Super Resolution.- FAN: Frequency Aggregation Network for Real Image Super-resolution.- Deep Cyclic Generative Adversarial Residual Convolutional Networks for Real Image Super-Resolution.- AIM 2020: Scene Relighting and Illumination Estimation Challenge.- WDRN : A Wavelet Decomposed RelightNet for Image Relighting.- SA-AE for Any-to-any Relighting.- Deep Relighting Networks for Image Light Source Manipulation.- LightNet: Deep Learning based Illumination Estimation from Virtual Images.- An Ensemble Neural Network for Scene Relighting with Light Classification.- Long-Term Human Video Generation of Multiple Futures Using Poses.- AgingMapGAN (AMGAN): High-Resolution Controllable Face Aging with Spatially-Aware Conditional GANs.- Unconstrained Text Detection in Manga: a New Dataset and Baseline.- Joint Demosaicking and Denoising for CFA and MSFA Images using a Mosaic-Adaptive Dense Residual Network.- Gated Texture CNN for Efficient and Configurable Image Denoising.- Quantized Warping and Residual Temporal Integration for Video Super-Resolution on Fast Motions.- Pyramidal Edge-maps and Attention based Guided Thermal Super-resolution.- AIM 2020 Challenge on ImageExtreme Inpainting.- Fast Light-Weight Network for Extreme Image Inpainting Challenge.