Atjaunināt sīkdatņu piekrišanu

Computer Vision-Guided Virtual Craniofacial Surgery: A Graph-Theoretic and Statistical Perspective 2011 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 166 pages, height x width: 235x155 mm, weight: 302 g, XXVI, 166 p., 1 Paperback / softback
  • Sērija : Advances in Computer Vision and Pattern Recognition
  • Izdošanas datums: 21-Apr-2013
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1447126459
  • ISBN-13: 9781447126454
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 166 pages, height x width: 235x155 mm, weight: 302 g, XXVI, 166 p., 1 Paperback / softback
  • Sērija : Advances in Computer Vision and Pattern Recognition
  • Izdošanas datums: 21-Apr-2013
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1447126459
  • ISBN-13: 9781447126454
Citas grāmatas par šo tēmu:
This unique text/reference discusses in depth the two integral components of reconstructive surgery; fracture detection, and reconstruction from broken bone fragments. In addition to supporting its application-oriented viewpoint with detailed coverage of theoretical issues, the work incorporates useful algorithms and relevant concepts from both graph theory and statistics. Topics and features: presents practical solutions for virtual craniofacial reconstruction and computer-aided fracture detection; discusses issues of image registration, object reconstruction, combinatorial pattern matching, and detection of salient points and regions in an image; investigates the concepts of maximum-weight graph matching, maximum-cardinality minimum-weight matching for a bipartite graph, determination of minimum cut in a flow network, and construction of automorphs of a cycle graph; examines the techniques of Markov random fields, hierarchical Bayesian restoration, Gibbs sampling, and Bayesian inference.

This unique text/reference discusses in depth the two integral components of reconstructive surgery; fracture detection, and reconstruction from broken bone fragments. It incorporates useful algorithms and relevant concepts from graph theory and statistics.

Recenzijas

From the reviews:

The goal of the research is to apply image processing techniques for the construction of a virtual human jaw. The monograph presents the underlying computational mathematics and algorithms and the results of the corresponding experiments. Readers with a normal understanding of the human anatomy can understand the book. It can be used as a textbook in graduate or higher-level image processing courses. (Maulik A. Dave, ACM Computing Reviews, April, 2012)

Part I: Overview and Foundations.- Introduction.- Graph-Theoretic Foundations.- A Statistical Primer.- Part II: Virtual Craniofacial Reconstruction.- Virtual Single-fracture Mandibular Reconstruction.- Virtual Multiple-fracture Mandibular Reconstruction.- Part III Computer-aided Fracture Detection.- Fracture Detection using Bayesian Inference.- Fracture Detection in an MRF-based Hierarchical Bayesian Framework.- Fracture Detection using Max-Flow Min-Cut.- Part IV: Concluding Remarks.- GUI Design and Research Synopsis.