Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computer Vision and Image Processing: 8th International Conference, CVIP 2023, Jammu, India, November 3-5, 2023, Revised Selected Papers, Part III

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 94,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The three-volume set CCIS 2009, 2010 and 2011 constitutes the refereed post-conference proceedings of the 8th International Conference on Computer Vision and Image Processing, CVIP 2023, held in Jammu, India, during November 35, 2023. 





The 140 revised full papers presented in these proceedings were carefully reviewed and selected from 461 submissions. The papers focus on various important and emerging topics in image processing, computer vision applications, deep learning, and machine learning techniques in the domain.
.- Face Image Inpainting using Context Encoders and Dynamically
Initialized Mask.

.- A Comparative Study on Deep CNN Visual Encoders for Image Captioning.



.- Robust Semi Supervised Medical Image Classification Leveraging Reliable
Pseudo Labels.



.- Semi-supervised Polyp Classification in Colonoscopy Images using GAN.



.- Towards Efficient Semantic Segmentation Compression via Meta Pruning.



.- Cross-Domain Feature Extraction using CycleGAN for Large FoV Thermal Image
creation.



.- Classification of Insect Pest using Transfer Learning Mechanism.



.- Federated Scaling of Pre-trained Models for Deep Facial Expression
Recognition.



.- Damage Segmentation and Restoration of Ancient Wall Paintings for
Preserving Cultural Heritage.



.- Colorization of Thermal Facial Images into Visible Facial Image using
RGB-GAN.



.- Fusion of hand crafted features and deep features to Detect COVID 19
detection.



.- An Improved AttnGAN model for Text to Image Synthesis.



.- Analyzing the impact of Instagram filters on facial expression recognition
algorithms.



.- MAAD-GAN: Memory-Augmented Attention-based Discriminator GAN for Video
Anomaly Detection.



.- AG-PDCnet: An Attention Guided Parkinson's Disease Classification Network
with MRI, DTI and Clinical Assessment Data.



.- Effective-LDAM: An Effective Loss Function To Mitigate Data Imbalance for
Robust Chest X-Ray Disease Classification,



.- Performance elevation using Augmented Pivot Point Rotation for Kidney
Stone Detection.



.- MotionFormer: An Improved Transformer-Based Architecture for Multi-Object
Tracking.



.- Exploring the Feasibility of PPG for Estimation of Heart Rate Variability:
A Mathematical Approach .



.- Improved Multi-Modal Image Fusion with Attention and Dense Networks:
Visual and Quantitative Evaluation.

.- Lightweight Learning Model for Speckle Denoising in Digital Holography.



.- Comparative Analysis of Stress Prediction using Unsupervised Machine
Learning Algorithms.



.- A Fractional Order Derivative Based Active Contour Model for Simultaneous
Image Despeckling and Segmentation.



.- Making Domain Specific Adversarial Attacks for  Retinal Fundus Images.



.- A fast and efficient algorithm for construction of discrete Voronoi
diagram.



.- An Explainable Deep Learning Model for Fingerprint Presentation Attack
Detection.



.- Multiscale Feature Fusion using Hybrid Loss for Skin Lesion Segmentation.



.- High Capacity and Reversible Steganographic Technique with Authentication
Capability.



.- Rough Spatial Ensemble Kernelized Fuzzy C Means Clustering for Robust
Brain MR Image Tissue Segmentation.



.- One Shot Learning to Select Data Augmentations for Skin Lesion
Classification.



.- Improved Image Captioning using GAN and ViT.



.- Robust CNN-based Segmentation of Infrastructure Cracks Segregating from
Shadows and Lines.



.- A Natural Language Processing Based Multimodal Deep Learning Approach for
News Category Tagging.



.- Enhanced Heart Disease Classification using Parallelization and integrated
Machine-Learning Techniques.



.- Free Space Detection for Autonomous Vehicles in Indian Driving Scenarios.



.- EUWOD-16: An Extended Dataset for Underwater Object Detection.



.- Low-Light Image Enhancement using Zero-DCE and DCP.



.- A comparative study on performances of adaptive and nonadaptive sparse
solvers for electric impedance tomography.



.- Face Detection in Challenging Scenes with a Customized Backbone.



.- A Comprehensive Study on Pre-trained Models for Skin Lesion Diagnosis in a
Federated Setting.