Atjaunināt sīkdatņu piekrišanu

E-grāmata: Computerized Systems for Diagnosis and Treatment of COVID-19

  • Formāts: EPUB+DRM
  • Izdošanas datums: 26-Jun-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031307881
  • Formāts - EPUB+DRM
  • Cena: 177,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 26-Jun-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031307881

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book describes the application of signal and image processing technologies, artificial intelligence, and machine learning techniques to support Covid-19 diagnosis and treatment. The book focuses on two main applications: critical diagnosis requiring high precision and speed, and treatment of symptoms, including those affecting the cardiovascular and neurological systems.

The areas discussed in this book range from signal processing, time series analysis, and image segmentation to detection and classification. Technical approaches include deep learning, transfer learning, transformers, AutoML, and other machine learning techniques that can be considered not only for Covid-19 issues but also for different medical applications, with slight adjustments to the problem under study.

The Covid-19 pandemic has impacted the entire world and changed how societies and individuals interact. Due to the high infection and mortality rates, and the multiple consequences of the virus infection in the human body, the challenges were vast and enormous. These necessitated the integration of different disciplines to address the problems. As a global response, researchers across academia and industry made several developments to provide computational solutions to support epidemiologic, managerial, and health/medical decisions. To that end, this book provides state-of-the-art information on the most advanced solutions.

Clinical impact of automatic diagnostic systems.- Lung segmentation from XRay.- Lung segmentation from CT Scan.- Covid Automatic Diagnostic based on XRay.- Covid Automatic Diagnostic based on CTScan.- Cardiovascular analysis of covid patients based on ECG.- Cognitive analysis of covid patients based on EEG.- AI Controlled Mechanical Ventilator for COVID-19 patients.

Prof. Joao Alexandre Lobo Marques is the Head of Department / Research Coordinator / Associate Professor at the University of Saint Joseph - USJ, Macau SAR, China (2017-). Co-founder Institute of Data Engineering and Sciences (IDEAS)/USJ 2021. Founder of the Laboratory of Applied Neurosciences/USJ 2019. Adjunct Professor Post Graduate Program of Telecommunications Engineering IFCE Brazil. Visiting Associate Professor at the Chinese Academy of Sciences (CAS) - Shenzhen Institutes of Advanced Technologies (SIAT) (2018-). Post Doctorate and Honorary Research Fellow from the University of Leicester-UK. Member of the Board of Advisors - Master in Global Marketing Management - Boston University Metropolitan College (BU-MET) USA. Solid international career with academic positions and relevant research developed in Asia (China), Europe (England, Germany and Portugal), Africa (Angola) and America (United States and Brazil). Strong leadership and team development skills in severalinternational research projects. Research Areas: Artificial Intelligence, Medical Image Processing, Machine Learning, Applied Neurosciences, Deep Learning, Neuroeconomics, Biofeedback, Mathematical Transforms, Business Analytics, Nonlinear Analysis.