Atjaunināt sīkdatņu piekrišanu

Concentration, Functional Inequalities and Isoperimetry [Mīkstie vāki]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Paperback / softback, 211 pages, weight: 407 g, Illustrations
  • Sērija : Contemporary Mathematics
  • Izdošanas datums: 30-Jun-2011
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821849719
  • ISBN-13: 9780821849712
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 147,05 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 211 pages, weight: 407 g, Illustrations
  • Sērija : Contemporary Mathematics
  • Izdošanas datums: 30-Jun-2011
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 0821849719
  • ISBN-13: 9780821849712
Citas grāmatas par šo tēmu:
The volume contains the proceedings of the international workshop on Concentration, Functional Inequalities and Isoperimetry, held at Florida Atlantic University in Boca Raton, Florida, from October 29-November 1, 2009.

The interactions between concentration, isoperimetry and functional inequalities have led to many significant advances in functional analysis and probability theory.

Important progress has also taken place in combinatorics, geometry, harmonic analysis and mathematical physics, to name but a few fields, with recent new applications in random matrices and information theory. This book should appeal to graduate students and researchers interested in the fascinating interplay between analysis, probability, and geometry.
Preface vii
COH formula and Dirichlet Laplacians on Small Domains of Pinned Path Spaces
1(12)
Shigeki Aida
Maximal Characterization of Hardy-Sobolev Spaces on Manifolds
13(10)
N. Badr
G. Dafni
On Milman's Ellipsoids and M-Position of Convex Bodies
23(12)
Sergey G. Bobkov
Fractional Generalizations of Young and Brunn-Minkowski Inequalities
35(20)
Sergey Bobkov
Mokshay Madiman
Liyao Wang
Approximately Gaussian Marginals and the Hyperplane Conjecture
55(14)
Ronen Eldan
Boaz Klartag
One More Proof of the Erdos-Turan Inequality, and an Error Estimate in Wigner's Law
69(8)
Ohad N. Feldheim
Sasha Sodin
Quantitative Isoperimetric Inequalities, with Applications to the Stability of Liquid Drops and Crystals
77(12)
A. Figalli
Spherical Reflection Positivity and the Hardy-Littlewood-Sobolev Inequality
89(14)
Rupert L. Frank
Elliott H. Lieb
On the Existence of Subgaussian Directions for Log-Concave Measures
103(20)
A. Giannopoulos
G. Paouris
P. Valettas
On Isoperimetric Sets of Radially Symmetric Measures
123(32)
Alexander V. Kolesnikov
Roman I. Zhdanov
From Concentration to Isoperimetry: Semigroup Proofs
155(12)
Michel Ledoux
Sobolev Inequalities, Rearrangements, Isoperimetry and Interpolation Spaces
167(28)
Joaquim Martin
Mario Milman
Isoperimetric Bounds on Convex Manifolds
195(14)
Emanuel Milman
The Log-Convex Density Conjecture
209
Frank Morgan
Christian Houdre is at the Georgia Institute of Technology, Atlanta, GA, USA.||Michel Ledoux is at the Universite Paul Sabatier, Toulouse, France.|Emanuel Milman is at the Technion-Israel Institute of Technology, Haifa, Israel.|Mario Milman is at Florida Atlantic University, Boca Raton, FL, USA