Atjaunināt sīkdatņu piekrišanu

E-grāmata: Conduction in Carbon Nanotube Networks: Large-Scale Theoretical Simulations

  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 13-Jun-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319199658
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Springer Theses
  • Izdošanas datums: 13-Jun-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319199658

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This thesis exploits the ability of the linear-scaling quantum mechanical code ONETEP to analyze systems containing many thousands of atoms. By implementing an electron transport capability to the code, it also investigates a range of phenomena associated with electrical conduction by nanotubes and, in particular, the process of transport electrons between tubes.

Extensive work has been done on the conductivity of single carbon nanotubes. However, any realistic wire made of nanotubes will consist of a large number of tubes of finite length. The conductance of the resulting wire is expected to be limited by the process of transferring electrons from one tube to another. These quantum mechanical calculations on very large systems have revealed a number of incorrect claims made previously in the literature. Conduction processes that have never before been studied at this level of theory are also investigated.
1 Introduction
1(8)
1.1 Carbon Nanotubes
1(2)
1.2 The Experimental Theorist: Computational Modelling
3(3)
1.3 Outline of This Thesis
6(3)
References
7(2)
2 The Structural and Electronic Properties of Carbon Nanotubes
9(16)
2.1 The Structure of Carbon Nanotubes
10(2)
2.1.1 Carbon Nanotube Wires, Fibres and Networks
11(1)
2.2 The Geometry of Individual Carbon Nanotubes
12(2)
2.3 The Electronic Properties of Carbon Nanotubes
14(8)
2.3.1 Tight-Binding Model of Graphene
14(3)
2.3.2 Zone-Folding Approximation
17(4)
2.3.3 Beyond the π/π* Zone-Folding Model
21(1)
2.3.4 Electronic Structure of Carbon Nanotube Bundles
21(1)
2.4 Summary
22(3)
References
23(2)
3 Mesoscopic Current and Ballistic Conductance
25(14)
3.1 Introduction
25(1)
3.2 Scattering Lengths in Carbon Nanotubes
26(3)
3.3 Conductance in Mesoscopic Materials: The Landauer-Buttiker Formalism
29(6)
3.3.1 Current from Transmission
29(2)
3.3.2 Ballistic Conductance
31(2)
3.3.3 Conduction at Low Bias and Linear-Response
33(1)
3.3.4 Transmission from Green's Functions
33(1)
3.3.5 Limitations of the Landauer-Buttiker Formalism
34(1)
3.4 Summary
35(4)
References
35(4)
4 First-Principles Methods
39(24)
4.1 Quasi-particles
39(1)
4.2 The Exact Solution to the Schrodinger Equation
40(3)
4.2.1 The Variational Principle
40(2)
4.2.2 Exponential Scaling
42(1)
4.3 Density Functional Theory
43(9)
4.3.1 The Hohenberg-Kohn Theorems
43(3)
4.3.2 The Kohn-Sham Mapping
46(2)
4.3.3 The Exchange-Correlation Functional
48(2)
4.3.4 Quasi-particles from Density Functional Theory
50(1)
4.3.5 Limitations of Density Functional Theory
51(1)
4.4 Practical Implementations
52(7)
4.4.1 Basis Sets
53(2)
4.4.2 The Pseudopotential Approximation
55(2)
4.4.3 Periodic and Aperiodic Systems
57(2)
4.5 Summary
59(4)
References
59(4)
5 First-Principles Electronic Transport
63(24)
5.1 Introduction
63(3)
5.1.1 Preliminaries and Definitions
65(1)
5.1.2 Non-orthogonal Basis
65(1)
5.2 Constructing the Device Matrices
66(3)
5.2.1 Lead Self Energies
66(1)
5.2.2 The Auxiliary Simulation Geometry
67(2)
5.3 Optimisation Strategies
69(1)
5.4 Properties Beyond the Transmission Coefficients
70(4)
5.4.1 Properties of the Leads
70(1)
5.4.2 Eigenchannels for Multi-lead Devices
71(3)
5.5 Applications
74(7)
5.5.1 Poly-acetylene Wire
74(3)
5.5.2 Conduction Between Terminated Carbon Nanotubes
77(4)
5.6 Outstanding Issues
81(2)
5.7 Summary
83(4)
References
84(3)
6 Momentum-Resonant Tunnelling Between Carbon Nanotubes
87(20)
6.1 Introduction
87(2)
6.2 Linear-Response from Perturbation Theory
89(3)
6.3 Tight-Binding Model
92(1)
6.4 Resonant Tunnelling Between CNTs
93(3)
6.4.1 Scaling Relations of the Momentum-Resonant Scattering Mechanism
96(1)
6.5 Momentum Resonances in Compositionally Disordered Networks
96(4)
6.6 Momentum Resonances in Doped Nanotubes
100(3)
6.7 Resonant Back-Scattering
103(1)
6.8 Summary
104(3)
References
105(2)
7 First-Principles Conductance Between Carbon Nanotubes
107(24)
7.1 Introduction
107(2)
7.2 Methods
109(3)
7.2.1 Generating the Structure
109(3)
7.3 The Role of Bend Angle
112(3)
7.3.1 The Effect of Chirality Mismatch
114(1)
7.4 The Role of End Termination
115(8)
7.4.1 The Effect of Chirality Mismatch
122(1)
7.5 Conductance Between Terminated Nanotubes at Finite Bias
123(4)
7.5.1 Methods
124(1)
7.5.2 Bias Drop
125(1)
7.5.3 Non-equilibrium Forces
125(2)
7.6 Conclusions
127(4)
References
129(2)
8 Charge Doping in Water-Adsorbed Carbon Nanotubes
131(16)
8.1 Introduction
131(2)
8.2 Methods
133(1)
8.3 Computing the Charge Polarisation
134(4)
8.4 Thermal Effects
138(2)
8.5 Estimating the Residual Charge Transfer
140(1)
8.6 Considerations of the Electronic Energy Level Alignment
141(2)
8.7 Summary
143(4)
References
144(3)
9 Conclusions
147(4)
9.1 Summary
147(1)
9.2 Further Work
148(3)
References
149(2)
Appendix A Transmission from Green's Functions 151(10)
Appendix B Block Tri-diagonal Matrix Inversion 161(2)
Appendix C Classical Electrostatic Charge Polarisation Model 163(2)
Appendix D Local Density of States 165