|
|
1 | (12) |
|
2 Well Ordered Lattice Structures in Crystals |
|
|
13 | (18) |
|
|
17 | (3) |
|
2.2 Reciprocal Lattice, Brillouin Zones |
|
|
20 | (5) |
|
|
25 | (6) |
|
3 Permanent Movement in the Crystal Lattice |
|
|
31 | (12) |
|
3.1 Quantum Theory: Max Planck and Albert Einstein |
|
|
32 | (2) |
|
3.2 Specific Heat of the Crystal Lattice, Phonon Spectrum |
|
|
34 | (5) |
|
3.3 Thermal Conductivity of the Crystal Lattice |
|
|
39 | (2) |
|
|
41 | (2) |
|
4 Electric Conductor or Insulator?---Energy Bands |
|
|
43 | (8) |
|
4.1 Approximation with Bound Electrons (Felix Bloch) |
|
|
44 | (3) |
|
4.2 Nearly-Free Electron Approximation (Rudolf Peierls) |
|
|
47 | (4) |
|
5 Metals Obey the Rules of Quantum Statistics |
|
|
51 | (14) |
|
|
51 | (2) |
|
5.2 Quantum Statistics, Fermi Distribution |
|
|
53 | (2) |
|
|
55 | (3) |
|
|
58 | (1) |
|
|
59 | (6) |
|
6 Less Can Be More: Semiconductors |
|
|
65 | (22) |
|
6.1 Intrinsic Semiconductors |
|
|
67 | (3) |
|
|
70 | (2) |
|
6.3 Excitons and Electron-Hole Droplets |
|
|
72 | (1) |
|
6.4 Metal-Semiconductor Contact, p-n Junction |
|
|
73 | (3) |
|
|
76 | (2) |
|
6.6 Photovoltaics, LED, Semiconductor Laser |
|
|
78 | (2) |
|
6.7 Miniaturization, Planar Technology |
|
|
80 | (2) |
|
6.8 Thermoelectricity, Peltier Cooling |
|
|
82 | (5) |
|
7 Circling Electrons in High Magnetic Fields |
|
|
87 | (18) |
|
|
88 | (2) |
|
|
90 | (1) |
|
7.3 Landau Theory, Landau Cylinders |
|
|
90 | (5) |
|
7.4 Integer Quantum Hall Effect |
|
|
95 | (5) |
|
7.5 Fractional Quantum Hall Effect |
|
|
100 | (2) |
|
7.6 Generation of High Magnetic Fields |
|
|
102 | (3) |
|
8 The Winner: Superconductors |
|
|
105 | (26) |
|
8.1 Meissner Effect, Magnetic Penetration Depth, London Theory |
|
|
108 | (7) |
|
8.2 Type-II Superconductors |
|
|
115 | (2) |
|
8.3 Magnetic Flux Quantum |
|
|
117 | (3) |
|
8.4 BCS Theory, Energy Gap |
|
|
120 | (2) |
|
|
122 | (3) |
|
8.6 Motion of the Magnetic Flux Quanta |
|
|
125 | (1) |
|
8.7 Technical Applications |
|
|
126 | (5) |
|
9 The Big Surprise: High-Temperature Superconductivity |
|
|
131 | (14) |
|
9.1 Cuprate Superconductors |
|
|
131 | (6) |
|
9.2 Symmetry of the Wave Function |
|
|
137 | (2) |
|
|
139 | (3) |
|
9.4 Intrinsic Josephson Junction |
|
|
142 | (1) |
|
9.5 More New Superconductors |
|
|
143 | (1) |
|
9.6 Technical Applications |
|
|
144 | (1) |
|
10 Magnetism: Order Among the Elementary Magnets |
|
|
145 | (18) |
|
|
146 | (1) |
|
|
147 | (3) |
|
|
150 | (4) |
|
|
154 | (2) |
|
|
156 | (1) |
|
10.6 Technical Applications, Giant Magneto-Resistance, Spintronics |
|
|
157 | (6) |
|
11 Nanostructures: Superlattices, Quantum Wires, and Quantum Dots |
|
|
163 | (22) |
|
11.1 Superlattices, Bloch Oscillations |
|
|
164 | (5) |
|
11.2 Mesoscopic Regime, Ballistic Electron Transport, Quantized Conductance Value |
|
|
169 | (4) |
|
11.3 Bottom Up, Fullerenes |
|
|
173 | (3) |
|
|
176 | (1) |
|
|
177 | (3) |
|
11.6 Topological Insulators |
|
|
180 | (1) |
|
11.7 Aharonov-Bohm Effect |
|
|
181 | (4) |
|
12 Defects in the Crystal Lattice: Useful or Harmful? |
|
|
185 | (14) |
|
12.1 Disorder at Thermodynamic Equilibrium |
|
|
186 | (1) |
|
12.2 Vacancies in the Crystal Lattice |
|
|
186 | (5) |
|
12.3 Materials Science of Radiation Damage |
|
|
191 | (1) |
|
12.4 Mechanical Strength of Materials |
|
|
192 | (2) |
|
|
194 | (3) |
|
|
197 | (2) |
Nobel Prizes in Physics Closely Connected with the Physics of Solids |
|
199 | (4) |
Nobel Prizes in Chemistry Closely Connected with the Physics of Solids |
|
203 | (2) |
Bibliography |
|
205 | (2) |
Name Index |
|
207 | (4) |
Subject Index |
|
211 | |