Atjaunināt sīkdatņu piekrišanu

E-grāmata: Congruences for L-Functions

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In [ Hardy and Williams, 1986] the authors exploited a very simple idea to obtain a linear congruence involving class numbers of imaginary quadratic fields modulo a certain power of 2. Their congruence provided a unified setting for many congruences proved previously by other authors using various means. The Hardy-Williams idea was as follows. Let d be the discriminant of a quadratic field. Suppose that d is odd and let d = PIP2· . . Pn be its unique decomposition into prime discriminants. Then, for any positive integer k coprime with d, the congruence holds trivially as each Legendre-Jacobi-Kronecker symbol (~) has the value + 1 or -1. Expanding this product gives ~ eld e:=l (mod4) where e runs through the positive and negative divisors of d and v (e) denotes the number of distinct prime factors of e. Summing this congruence for o < k < Idl/8, gcd(k, d) = 1, gives ~ (-It(e) ~ (~) =:O(mod2n). eld o
Preface ix
Short Character Sums
1(50)
Introduction
1(8)
Bernoulli Numbers and Polynomials
9(3)
Generalized Bernoulli Numbers
12(4)
Dirichlet L-functions
16(2)
The values of L(1, χ) and L(2, χ)
18(3)
The Dedekind Zeta Function
21(2)
K-theoretic Background
23(4)
Quadratic Fields
27(3)
Power Sums Involving Dirichlet Characters
30(15)
Some Elementary Lemmas
45(6)
Class Number Congruences
51(26)
Imaginary Quadratic Fields
51(21)
Real Quadratic Fields
72(5)
Congruences Between the Orders of K2-Groups
77(40)
Real Quadratic Fields
78(18)
Congruences for Higher Bernoulli Numbers
96(21)
Congruences Among the Values of 2-Adic L-Functions
117(64)
Notation
117(2)
p-adic L-functions
119(3)
Coleman's Results
122(6)
Some Auxiliary Lemmas
128(32)
Linear Congruence Relations
160(21)
Applications of Zagier's Formula (I)
181(22)
Introduction
181(3)
Dirichlet Characters with Certain Properties
184(8)
Character Sums in Terms of Bernoulli Numbers
192(3)
Applications
195(3)
Tables
198(5)
Applications of Zagier's Formula (II)
203(28)
Preliminaries
203(5)
Gauss' Congruence from Dirichlet's Class Number Formula
208(2)
Character Power Sums in Terms of Bernoulli Numbers
210(3)
The Main Results
213(18)
Bibliography 231(16)
Author Index 247(2)
Subject Index 249(4)
List of symbols 253