Preface |
|
xi | |
Acknowledgements |
|
xv | |
Credits |
|
xvii | |
Preface to the Second Edition |
|
xxiii | |
|
Proportion in Architecture |
|
|
1 | (34) |
|
|
1 | (1) |
|
|
2 | (5) |
|
|
7 | (2) |
|
The Structure of Ancient Musical Scales |
|
|
9 | (3) |
|
The Musical Scale in Architecture |
|
|
12 | (4) |
|
Systems of Proportion Based on √2, θ6, and φ |
|
|
16 | (5) |
|
The Golden Mean and Its Application to the Modulor of Le Corbusier |
|
|
21 | (7) |
|
An Ancient System of Roman Proportion |
|
|
28 | (7) |
|
|
32 | (3) |
|
|
35 | (40) |
|
|
35 | (1) |
|
|
36 | (1) |
|
Families of Similar Figures |
|
|
37 | (1) |
|
Self-Similarity of the Right Triangle |
|
|
38 | (3) |
|
|
41 | (1) |
|
|
41 | (2) |
|
Construction of the Square Root of a Given Length |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
45 | (3) |
|
Growth and Similarity in Nature |
|
|
48 | (4) |
|
Growth and Similarity in Geometry |
|
|
52 | (3) |
|
Infinite Self-Similar Curves |
|
|
55 | (8) |
|
|
63 | (12) |
|
|
65 | (2) |
|
|
67 | (8) |
|
|
75 | (30) |
|
|
75 | (1) |
|
|
76 | (5) |
|
Some Tiling Properties of φ |
|
|
81 | (1) |
|
The Golden Rectangle and the Golden Section |
|
|
82 | (3) |
|
|
85 | (1) |
|
|
86 | (3) |
|
The Golden Mean and Patterns of Plant Growth |
|
|
89 | (8) |
|
The Music of Bartok: A System Both Open and Closed |
|
|
97 | (8) |
|
|
105 | (62) |
|
|
105 | (3) |
|
|
108 | (6) |
|
|
114 | (3) |
|
Maps and Graphs on a Sphere |
|
|
117 | (2) |
|
Connectivity of Graphs and Maps |
|
|
119 | (1) |
|
|
120 | (2) |
|
|
122 | (2) |
|
|
124 | (1) |
|
|
125 | (2) |
|
Planar and Nonplanar Graphs |
|
|
127 | (2) |
|
Maps and Graphs on Other Surfaces |
|
|
129 | (5) |
|
The Torus and the Mobius Strip |
|
|
134 | (3) |
|
|
137 | (1) |
|
|
138 | (3) |
|
|
141 | (1) |
|
Szilassi and Csaszar Maps |
|
|
142 | (3) |
|
|
145 | (9) |
|
|
154 | (5) |
|
|
159 | (4) |
|
|
163 | (4) |
|
|
167 | (42) |
|
|
167 | (2) |
|
|
169 | (4) |
|
Regular Tilings of the Plane |
|
|
173 | (4) |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
178 | (3) |
|
Duality of Semiregular Tilings |
|
|
181 | (1) |
|
The Module of a Semiregular Tiling |
|
|
182 | (1) |
|
Other Tilings with Regular Polygons |
|
|
183 | (1) |
|
Transformations of Regular Tiling |
|
|
183 | (11) |
|
|
194 | (4) |
|
|
198 | (2) |
|
|
200 | (9) |
|
Two-Dimensional Networks and Lattices |
|
|
209 | (46) |
|
|
209 | (1) |
|
|
209 | (5) |
|
|
214 | (3) |
|
|
217 | (3) |
|
|
220 | (4) |
|
Spider Webs, Dirichlet Domains, and Rigidity |
|
|
224 | (6) |
|
|
230 | (4) |
|
Pattern Generation with Lattices |
|
|
234 | (4) |
|
Dirichlet Domains of Lattices and Their Relation to Plant Growth |
|
|
238 | (5) |
|
Quasicrystals and Penrose Tiles |
|
|
243 | (12) |
|
Appendix A Projective Geometry |
|
|
248 | (7) |
|
Polyhedra: Platonic Solids |
|
|
255 | (40) |
|
|
255 | (2) |
|
|
257 | (2) |
|
The Platonic Solids as Regular Polyhedra |
|
|
259 | (2) |
|
Maps of Regular Polyhedra on a Circumscribed Sphere |
|
|
261 | (2) |
|
Maps of the Regular Polyhedra on the Plane---Schlegel Diagrams |
|
|
263 | (1) |
|
|
264 | (4) |
|
|
268 | (2) |
|
|
270 | (3) |
|
|
273 | (2) |
|
From Maps to Polyhedra---The Dihedral Angle |
|
|
275 | (2) |
|
|
277 | (2) |
|
|
279 | (3) |
|
|
282 | (6) |
|
|
288 | (7) |
|
|
291 | (1) |
|
Appendix 7.B A Proof of Descartes Formula |
|
|
292 | (3) |
|
|
|
Transformation of the Platonic Solids I |
|
|
295 | (32) |
|
|
295 | (1) |
|
|
296 | (3) |
|
Interpenetrating Duals Revisited |
|
|
299 | (2) |
|
|
301 | (2) |
|
Embeddings Based on Symmetry |
|
|
303 | (3) |
|
Designs Based on Symmetry Breaking |
|
|
306 | (2) |
|
Relation to the Golden Mean |
|
|
308 | (2) |
|
|
310 | (3) |
|
The Tetrahedron---Methane Molecule Molecule and Soap Bubble |
|
|
313 | (2) |
|
Tetrahedron as the Atom of Structure |
|
|
315 | (2) |
|
|
317 | (6) |
|
Geodesic Domes and Viruses |
|
|
323 | (4) |
|
Transformation of the Platonic Solids II |
|
|
327 | (20) |
|
|
327 | (1) |
|
|
327 | (2) |
|
|
329 | (3) |
|
|
332 | (2) |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
335 | (2) |
|
|
337 | (2) |
|
|
339 | (2) |
|
|
341 | (6) |
|
|
347 | (36) |
|
|
347 | (1) |
|
|
347 | (3) |
|
|
350 | (3) |
|
|
353 | (2) |
|
Three-Dimensional Lattices |
|
|
355 | (1) |
|
|
356 | (1) |
|
|
357 | (3) |
|
|
360 | (2) |
|
Infinite Regular Surfaces |
|
|
362 | (3) |
|
The Diamond and Graphite Nets |
|
|
365 | (3) |
|
|
368 | (1) |
|
A Unified Look at Nets Related to Cubic Lattices |
|
|
369 | (2) |
|
|
371 | (6) |
|
|
377 | (6) |
|
|
383 | (22) |
|
|
383 | (1) |
|
|
384 | (2) |
|
|
386 | (1) |
|
|
387 | (3) |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
392 | (1) |
|
|
393 | (1) |
|
Proper and Improper Transformations |
|
|
394 | (1) |
|
|
395 | (7) |
|
Some Reflection Exercises |
|
|
402 | (1) |
|
Some Additional Relations Involving Isometries |
|
|
403 | (2) |
|
|
405 | (48) |
|
|
405 | (3) |
|
The Mathematics of Symmetry |
|
|
408 | (2) |
|
|
410 | (1) |
|
|
411 | (2) |
|
|
413 | (2) |
|
Pattern Generation and the Kaleidoscope |
|
|
415 | (2) |
|
A Colored Kaleidoscope Symmetry |
|
|
417 | (2) |
|
Some Other Examples of Pattern Generation |
|
|
419 | (1) |
|
Pattern Generation in Hyperbolic Geometry |
|
|
420 | (2) |
|
|
422 | (3) |
|
The Two-Dimensional Ornamental Symmetry Groups |
|
|
425 | (5) |
|
|
430 | (2) |
|
|
432 | (3) |
|
Interaction of Two Rotocenters Implies a Third |
|
|
435 | (2) |
|
|
437 | (1) |
|
|
438 | (5) |
|
Aesthetics of Wallpaper Patterns |
|
|
443 | (2) |
|
The Symmetry of Islamic Tilings |
|
|
445 | (1) |
|
|
446 | (7) |
Epilogue |
|
453 | (2) |
References |
|
455 | (8) |
Index |
|
463 | (10) |
Supplements |
|
473 | (14) |
New References for the Second Edition |
|
487 | |