Preface |
|
xv | |
|
PART 1 Integers and Equivalence Relations |
|
|
1 | (28) |
|
|
3 | (1) |
|
|
3 | (3) |
|
|
6 | (7) |
|
|
13 | (2) |
|
|
15 | (3) |
|
|
18 | (2) |
|
|
20 | (3) |
|
|
23 | (6) |
|
|
29 | (196) |
|
|
31 | (11) |
|
|
31 | (3) |
|
|
34 | (3) |
|
|
37 | (4) |
|
|
41 | (1) |
|
|
42 | (18) |
|
Definition and Examples of Groups |
|
|
42 | (7) |
|
Elementary Properties of Groups |
|
|
49 | (3) |
|
|
52 | (2) |
|
|
54 | (6) |
|
3 Finite Groups; Subgroups |
|
|
60 | (15) |
|
|
60 | (2) |
|
|
62 | (3) |
|
|
65 | (3) |
|
|
68 | (7) |
|
|
75 | (18) |
|
Properties of Cyclic Groups |
|
|
75 | (6) |
|
Classification of Subgroups of Cyclic Groups |
|
|
81 | (4) |
|
|
85 | (6) |
|
Biography of James Joseph Sylvester |
|
|
91 | (2) |
|
|
93 | (27) |
|
|
93 | (3) |
|
|
96 | (2) |
|
Properties of Permutations |
|
|
98 | (11) |
|
A Check-Digit Scheme Based on D5 |
|
|
109 | (3) |
|
|
112 | (6) |
|
Biography of Augustin Cauchy |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
120 | (18) |
|
|
120 | (1) |
|
|
120 | (4) |
|
|
124 | (1) |
|
Properties of Isomorphisms |
|
|
125 | (3) |
|
|
128 | (4) |
|
|
132 | (5) |
|
Biography of Arthur Cayley |
|
|
137 | (1) |
|
7 Cosets and Lagrange's Theorem |
|
|
138 | (18) |
|
|
138 | (4) |
|
Lagrange's Theorem and Consequences |
|
|
142 | (4) |
|
An Application of Cosets to Permutation Groups |
|
|
146 | (1) |
|
The Rotation Group of a Cube and a Soccer Ball |
|
|
147 | (3) |
|
An Application of Cosets to the Rubik's Cube |
|
|
150 | (1) |
|
|
150 | (5) |
|
Biography of Joseph Lagrange |
|
|
155 | (1) |
|
8 External Direct Products |
|
|
156 | (18) |
|
|
156 | (2) |
|
Properties of External Direct Products |
|
|
158 | (2) |
|
The Group of Units Modulo n as an External Direct Product |
|
|
160 | (2) |
|
|
162 | (5) |
|
|
167 | (6) |
|
Biography of Leonard Adleman |
|
|
173 | (1) |
|
9 Normal Subgroups and Factor Groups |
|
|
174 | (20) |
|
|
174 | (2) |
|
|
176 | (4) |
|
Applications of Factor Groups |
|
|
180 | (3) |
|
|
183 | (4) |
|
|
187 | (6) |
|
Biography of Evariste Galois |
|
|
193 | (1) |
|
|
194 | (18) |
|
|
194 | (2) |
|
Properties of Homomorphisms |
|
|
196 | (4) |
|
The First Isomorphism Theorem |
|
|
200 | (5) |
|
|
205 | (6) |
|
Biography of Camille Jordan |
|
|
211 | (1) |
|
11 Fundamental Theorem of Finite Abelian Groups |
|
|
212 | (13) |
|
|
212 | (1) |
|
The Isomorphism Classes of Abelian Groups |
|
|
213 | (4) |
|
Proof of the Fundamental Theorem |
|
|
217 | (3) |
|
|
220 | (5) |
|
|
225 | (102) |
|
|
227 | (10) |
|
Motivation and Definition |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
230 | (2) |
|
|
232 | (4) |
|
Biography of I. N. Herstein |
|
|
236 | (1) |
|
|
237 | (12) |
|
|
237 | (1) |
|
|
238 | (2) |
|
|
240 | (3) |
|
|
243 | (5) |
|
Biography of Nathan Jacobson |
|
|
248 | (1) |
|
14 Ideals and Factor Rings |
|
|
249 | (14) |
|
|
249 | (1) |
|
|
250 | (3) |
|
Prime Ideals and Maximal Ideals |
|
|
253 | (3) |
|
|
256 | (5) |
|
Biography of Richard Dedekind |
|
|
261 | (1) |
|
Biography of Emmy Noether |
|
|
262 | (1) |
|
|
263 | (13) |
|
|
263 | (3) |
|
Properties of Ring Homomorphisms |
|
|
266 | (2) |
|
|
268 | (2) |
|
|
270 | (5) |
|
Biography of Irving Kaplansky |
|
|
275 | (1) |
|
|
276 | (13) |
|
|
276 | (3) |
|
The Division Algorithm and Consequences |
|
|
279 | (4) |
|
|
283 | (5) |
|
Biography of Saunders Mac Lane |
|
|
288 | (1) |
|
17 Factorization of Polynomials |
|
|
289 | (17) |
|
|
289 | (3) |
|
|
292 | (5) |
|
Unique Factorization in Z[ x] |
|
|
297 | (1) |
|
Weird Dice: An Application of Unique Factorization |
|
|
298 | (2) |
|
|
300 | (5) |
|
|
305 | (1) |
|
18 Divisibility in Integral Domains |
|
|
306 | (21) |
|
|
306 | (3) |
|
Historical Discussion of Fermat's Last Theorem |
|
|
309 | (3) |
|
Unique Factorization Domains |
|
|
312 | (3) |
|
|
315 | (3) |
|
|
318 | (5) |
|
Biography of Sophie Germain |
|
|
323 | (1) |
|
Biography of Andrew Wiles |
|
|
324 | (1) |
|
Biography of Pierre de Fermat |
|
|
325 | (2) |
|
|
327 | (58) |
|
|
329 | (9) |
|
|
329 | (1) |
|
|
330 | (1) |
|
|
331 | (2) |
|
|
333 | (3) |
|
|
336 | (1) |
|
Biography of Olga Taussky-Todd |
|
|
337 | (1) |
|
|
338 | (16) |
|
The Fundamental Theorem of Field Theory |
|
|
338 | (2) |
|
|
340 | (6) |
|
Zeros of an Irreducible Polynomial |
|
|
346 | (4) |
|
|
350 | (3) |
|
Biography of Leopold Kronecker |
|
|
353 | (1) |
|
|
354 | (13) |
|
Characterization of Extensions |
|
|
354 | (2) |
|
|
356 | (4) |
|
Properties of Algebraic Extensions |
|
|
360 | (2) |
|
|
362 | (4) |
|
Biography of Ernst Steinitz |
|
|
366 | (1) |
|
|
367 | (11) |
|
Classification of Finite Fields |
|
|
367 | (1) |
|
Structure of Finite Fields |
|
|
368 | (4) |
|
Subfields of a Finite Field |
|
|
372 | (2) |
|
|
374 | (3) |
|
Biography of L. E. Dickson |
|
|
377 | (1) |
|
23 Geometric Constructions |
|
|
378 | (7) |
|
Historical Discussion of Geometric Constructions |
|
|
378 | (1) |
|
|
379 | (2) |
|
Angle-Trisectors and Circle-Squarers |
|
|
381 | (1) |
|
|
381 | (4) |
|
|
385 | |
|
|
387 | (17) |
|
|
387 | (1) |
|
|
388 | (1) |
|
|
389 | (6) |
|
Applications of Sylow Theorems |
|
|
395 | (3) |
|
|
398 | (5) |
|
Biography of Oslo Ludwig Sylow |
|
|
403 | (1) |
|
|
404 | (18) |
|
|
404 | (5) |
|
|
409 | (4) |
|
|
413 | (1) |
|
|
414 | (1) |
|
|
415 | (1) |
|
|
415 | (4) |
|
Biography of Michael Aschbacher |
|
|
419 | (1) |
|
Biography of Daniel Gorenstein |
|
|
420 | (1) |
|
Biography of John Thompson |
|
|
421 | (1) |
|
26 Generators and Relations |
|
|
422 | (16) |
|
|
422 | (1) |
|
|
423 | (1) |
|
|
424 | (1) |
|
|
425 | (4) |
|
Classification of Groups of Order Up to 15 |
|
|
429 | (2) |
|
Characterization of Dihedral Groups |
|
|
431 | (1) |
|
Realizing the Dihedral Groups with Mirrors |
|
|
432 | (2) |
|
|
434 | (3) |
|
Biography of Marshall Hall, Jr. |
|
|
437 | (1) |
|
|
438 | (8) |
|
|
438 | (2) |
|
Classification of Finite Plane Symmetry Groups |
|
|
440 | (1) |
|
Classification of Finite Groups of Rotations in R3 |
|
|
441 | (2) |
|
|
443 | (3) |
|
28 Frieze Groups and Crystallographic Groups |
|
|
446 | (26) |
|
|
446 | (6) |
|
The Crystallographic Groups |
|
|
452 | (6) |
|
Identification of Plane Periodic Patterns |
|
|
458 | (6) |
|
|
464 | (5) |
|
Biography of M. C. Escher |
|
|
469 | (1) |
|
Biography of George Poly a |
|
|
470 | (1) |
|
Biography of John H. Conway |
|
|
471 | (1) |
|
|
472 | (10) |
|
|
472 | (1) |
|
|
473 | (2) |
|
|
475 | (3) |
|
|
478 | (1) |
|
|
479 | (2) |
|
Biography of William Burnside |
|
|
481 | (1) |
|
30 Cayley Digraphs of Groups |
|
|
482 | (21) |
|
|
482 | (1) |
|
The Cayley Digraph of a Group |
|
|
482 | (4) |
|
Hamiltonian Circuits and Paths |
|
|
486 | (6) |
|
|
492 | (3) |
|
|
495 | (6) |
|
Biography of William Rowan Hamilton |
|
|
501 | (1) |
|
|
502 | (1) |
|
31 Introduction to Algebraic Coding Theory |
|
|
503 | (27) |
|
|
503 | (5) |
|
|
508 | (5) |
|
Parity-Check Matrix Decoding |
|
|
513 | (3) |
|
|
516 | (4) |
|
Historical Note: The Ubiquitous Reed-Solomon Codes |
|
|
520 | (2) |
|
|
522 | (5) |
|
Biography of Richard W. Hamming |
|
|
527 | (1) |
|
Biography of Jessie MacWilliams |
|
|
528 | (1) |
|
|
529 | (1) |
|
32 An Introduction to Galois Theory |
|
|
530 | (17) |
|
Fundamental Theorem of Galois Theory |
|
|
530 | (7) |
|
Solvability of Polynomials by Radicals |
|
|
537 | (4) |
|
Insolvability of a Quintic |
|
|
541 | (1) |
|
|
542 | (4) |
|
|
546 | (1) |
|
|
547 | |
|
|
547 | (1) |
|
|
548 | (4) |
|
The Constructible Regular n-gons |
|
|
552 | (2) |
|
|
554 | (2) |
|
Biography of Carl Friedrich Gauss |
|
|
556 | (1) |
|
Biography of Manjul Bhargava |
|
|
557 | |
Selected Answers |
|
1 | (32) |
Index of Mathematicians |
|
33 | (4) |
Index of Terms |
|
37 | |