Atjaunināt sīkdatņu piekrišanu

Contemporary Optics Softcover reprint of the original 1st ed. 1978 [Mīkstie vāki]

  • Formāts: Paperback / softback, 370 pages, height x width: 229x152 mm, weight: 561 g, 23 Illustrations, black and white; X, 370 p. 23 illus., 1 Paperback / softback
  • Sērija : Optical Physics and Engineering
  • Izdošanas datums: 12-Dec-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1468423606
  • ISBN-13: 9781468423600
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 95,99 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 112,94 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 370 pages, height x width: 229x152 mm, weight: 561 g, 23 Illustrations, black and white; X, 370 p. 23 illus., 1 Paperback / softback
  • Sērija : Optical Physics and Engineering
  • Izdošanas datums: 12-Dec-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1468423606
  • ISBN-13: 9781468423600
Citas grāmatas par šo tēmu:
With the advent of lasers, numerous applications of it such as optical information processing, holography, and optical communication have evolved. These applications have made the study of optics essential for scientists and engineers. The present volume, intended for senior under­ graduate and first-year graduate students, introduces basic concepts neces­ sary for an understanding of many of these applications. The book has grown out of lectures given at the Master's level to students of applied optics at the Indian Institute of Technology, New Delhi. Chapters 1-3 deal with geometrical optics, where we develop the theory behind the tracing of rays and calculation of aberrations. The formulas for aberrations are derived from first principles. We use the method in­ volving Luneburg's treatment starting from Hamilton's equations since we believe that this method is easy to understand. Chapters 4--8 discuss the more important aspects of contemporary physical optics, namely, diffraction, coherence, Fourier optics, and holog­ raphy. The basis for discussion is the scalar wave equation. A number of applications of spatial frequency filtering and holography are also discussed. With the availability of high-power laser beams, a large number of nonlinear optical phenomena have been studied. Of the various nonlinear phenomena, the self-focusing (or defocusing) of light beams due to the nonlinear dependence of the dielectric constant on intensity has received considerable attention. In Chapter 9 we discuss in detail the steady-state self-focusing of light beams.

Papildus informācija

Springer Book Archives
1. Paraxial Ray Optics.- 1.1. Introduction.- 1.2. Fermats Principle.-
1.3. Lagrangian Formulation.- 1.4 Hamiltonian Formulation.- 1.5. Application
of the Hamiltonian Formulation to the Study of Paraxial Lens Optics.- 1.6.
Eikonal Approximation.- 1.7. Wave Optics as Quantized Geometrical Optics.-
2.
Geometrical Theory of Third-Order Aberrations.- 2.1. Introduction.- 2.2.
Expressions for Third-Order Aberrations.- 2.3. Physical Significance of the
Coefficients A, B, C, D, and E.- 2.4. The Coefficients Hij in Terms of
Refractive-Index Variation.- 2.5. Aberrations of Graded-Index Media.- 2.6.
Aberrations in Systems Possessing Finite Discontinuities in Refractive
Index.- 2.7. Chromatic Aberration.-
3. Characteristic Functions.- 3.1.
Introduction.- 3.2. Point Characteristic function.- 3.3. Mixed Characteristic
function.- 3.4. Angle Characteristic function.- 3.5. Explicit Evaluation of
Characteristic Functions.-
4. Diffraction.- 4.1. Introduction.- 4.2. The
Spherical Wave.- 4.3. Integral Theorem of Helmholtz and Kirchhoff.- 4.4. The
Fresnel-Kirchhoff Diffraction Formula.- 4.5. Fraunhofer and Fresnel
Diffraction.- 4.6. Fraunhofer Diffraction by a Rectangular Aperture.- 4.7.
Fraunhofer Diffraction by a Circular Aperture.- 4.8. Distribution of
Intensity in the Airy Pattern.- 4.9. Fresnel Diffraction by a Circular
Aperture.- 4.10. Fresnel Diffraction by a Single Slit.- 4.11. Diffraction of
Waves Having Amplitude Distribution along the Wavefront.- 4.12. Babinets
Principle.- 4.13. Periodic Apertures.- 4.14. Intensity Distribution near the
Focal Plane.- 4.15. Optical Resonators.-
5. Partially Coherent Light.- 5.1.
Introduction.- 5.2. Complex Representation.- 5.3. Mutual Coherence Function
and Degree of Coherence.- 5.4. Quasi-Monochromatic Sources.- 5.5. Van
Cittert-ZernikeTheorem.- 5.6. Differential Equations Satisfied by ?12(?).-
5.7. Partial Polarization.-
6. Fourier Optics I. Spatial Frequency
Filtering.- 6.1. Introduction.- 6.2. Fraunhofer and Fresnel Diffraction
Approximations.- 6.3. Effect of a Thin Lens on an Incident Field
Distribution.- 6.4. Lens as a Fourier-Transforming element.- 6.5. Spatial
Frequency Filtering and Its Applications.-
7. Fourier Optics II. Optical
Transfer Functions.- 7.1. Introduction.- 7.2. The Point-Spread function.-
7.3. Point-Spread Function of a Thin Lens.- 7.4. Frequency Analysis.- 7.5.
Coherence and Resolution.-
8. Holography.- 8.1. Introduction.- 8.2. The
Underlying Principle.- 8.3. Interference between Two Plane Waves.- 8.4. Point
Source Holograms.- 8.5. Diffuse Illumination of the Object.- 8.6. Fourier
Transform Holograms.- 8.7. Volume Holograms.- 8.8. Applications of
Holography.-
9. Self-Focusing.- 9.1. Introduction.- 9.2. Elementary Theory of
Self-Focusing.- 9.3. More Rigorous Theory for Self-Focusing.- 9.4. Thermal
Self-Focusing/Defocusing of Laser Beams.- 9.5. Solution of the Scalar Wave
Equation with Weak Nonlinearity.- 9.6. General Problems on the Calculation of
the Nonlinear Dielectric Constant.-
10. Graded-Index Waveguides.- 10.1.
Introduction.- 10.2. Modal Analysis.- 10.3. Propagation through a Selfoc
Fiber.- 10.4. Pulse Propagation.- 10.5. Fabrication.-
11. Evanescent Waves
and the Goos-Hänchen Effect.- 11.1. Introduction.- 11.2. Existence of
Evanescent Waves.- 11.3. Total Internal Reflection of a Bounded Beam.- 11.4.
Physical Understanding of the Goos-Hänchen Shift.- 11.5. The Goos-Hänchen
Effect in a Planar Waveguide.- 11.6. Prism-Film Coupler.- Appendix A. The
Dirac Delta Function.- B. The Fourier Transform.- C. Solution of Equation
(10.212).- References.