Atjaunināt sīkdatņu piekrišanu

E-grāmata: Continuous Time Markov Processes

4.20/5 (10 ratings by Goodreads)
  • Formāts: 271 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 03-Sep-2010
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470411756
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 74,09 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 271 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 03-Sep-2010
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470411756
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Markov processes are among the most important stochastic processes for both theory and applications. This book develops the general theory of these processes, and applies this theory to various special examples. The initial chapter is devoted to the most important classical example - one dimensional Brownian motion. This, together with a chapter on continuous time Markov chains, provides the motivation for the general setup based on semigroups and generators. Chapters on stochastic calculus and probabilistic potential theory give an introduction to some of the key areas of application of Brownian motion and its relatives. A chapter on interacting particle systems treats a more recently developed class of Markov processes that have as their origin problems in physics and biology. This is a textbook for a graduate course that can follow one that covers basic probabilistic limit theorems and discrete time processes.
Preface ix
One-Dimensional Brownian Motion
1(56)
Some motivation
1(1)
The multivariate Gaussian distribution
2(3)
Processes with stationary independent increments
5(1)
Definition of Brownian motion
5(4)
The construction
9(6)
Path properties
15(6)
The Markov property
21(7)
The strong Markov property and applications
28(10)
Continuous time martingales and applications
38(9)
The Skorokhod embedding
47(4)
Donsker's theorem and applications
51(6)
Continuous Time Markov Chains
57(34)
The basic setup
57(2)
Some examples
59(2)
From Markov chain to infinitesimal description
61(4)
Blackwell's example
65(3)
From infinitesimal description to Markov chain
68(11)
Stationary measures, recurrence, and transience
79(7)
More examples
86(5)
Feller Processes
91(42)
The basic setup
91(7)
From Feller process to infinitesimal description
98(4)
From infinitesimal description to Feller process
102(7)
A few tools
109(10)
Applications to Brownian motion and its relatives
119(14)
Interacting Particle Systems
133(60)
Some motivation
133(1)
Spin systems
134(15)
The voter model
149(12)
The contact process
161(14)
Exclusion processes
175(18)
Stochastic Integration
193(34)
Some motivation
193(2)
The Ito integral
195(9)
Ito's formula and applications
204(9)
Brownian local time
213(6)
Connections to Feller processes on R1
219(8)
Multi-Dimensional Brownian Motion and the Dirichlet Problem
227(20)
Harmonic functions and the Dirichlet problem
228(3)
Brownian motion on Rn
231(6)
Back to the Dirichlet problem
237(8)
The Poisson equation
245(2)
Appendix
247(20)
Commonly used notation
247(1)
Some measure theory
248(1)
Some analysis
249(3)
The Poisson distribution
252(1)
Random series and laws of large numbers
252(1)
The central limit theorem and related topics
253(5)
Discrete time martingales
258(3)
Discrete time Markov chains
261(2)
The renewal theorem
263(1)
Harmonic functions for discrete time Markov chains
263(2)
Subadditive functions
265(2)
Bibliography 267(2)
Index 269