Preface |
|
xi | |
|
Chapter 1 Relativity: A theory of space, time, and gravity |
|
|
1 | (26) |
|
1.1 The Principle Of Relativity |
|
|
1 | (1) |
|
1.2 The Law Of Inertia: Foundation Of Special Relativity |
|
|
2 | (5) |
|
1.3 Space, Time, And Spacetime |
|
|
7 | (4) |
|
|
11 | (2) |
|
1.5 Relativity Of Causality: Spacelike And Timelike |
|
|
13 | (2) |
|
1.6 Segue To General Relativity: Noninertial Frames |
|
|
15 | (2) |
|
1.7 General Relativity: A Theory Of Gravitation |
|
|
17 | (7) |
|
1.8 Hasta La Vista, Gravity |
|
|
24 | (3) |
|
Chapter 2 Basic Special Relativity |
|
|
27 | (18) |
|
2.1 Comparison Of Time Intervals: The Bondi K-Factor |
|
|
27 | (2) |
|
|
29 | (1) |
|
|
30 | (2) |
|
2.4 Lorentz Transformation |
|
|
32 | (2) |
|
|
34 | (7) |
|
2.6 Foundational Experiments |
|
|
41 | (4) |
|
Chapter 3 Lorentz Transformation, I |
|
|
45 | (12) |
|
3.1 Frames In Standard Configuration |
|
|
45 | (6) |
|
3.2 Frames Not In Standard Configuration |
|
|
51 | (1) |
|
3.3 Transformation Of Velocity And Acceleration |
|
|
52 | (2) |
|
3.4 Relativistic Aberration And Doppler Effect |
|
|
54 | (3) |
|
Chapter 4 Geometry Of Lorentz Invariance |
|
|
57 | (12) |
|
4.1 Lorentz Transformations As Spacetime Rotations |
|
|
57 | (4) |
|
4.2 Kinematic Effects From The Invariant Hyperbola |
|
|
61 | (1) |
|
4.3 Classification Of Lorentz Transformations |
|
|
62 | (2) |
|
4.4 Spacetime Geometry And Causality |
|
|
64 | (5) |
|
Chapter 5 Tensors On Flat Spaces |
|
|
69 | (44) |
|
5.1 Transformation Properties |
|
|
69 | (16) |
|
5.2 Tensor Densities, Invariant Volume Element |
|
|
85 | (2) |
|
5.3 Derivatives Of Tensors And The Four-Wavevector |
|
|
87 | (2) |
|
5.4 Interlude: Draw A Line Here |
|
|
89 | (1) |
|
5.5 Tensors As Multilinear Mappings |
|
|
89 | (2) |
|
5.6 Metric Tensor Revisited |
|
|
91 | (1) |
|
5.7 Symmetry Operations On Tensors |
|
|
92 | (1) |
|
5.8 Levi-Civita Tensor And Determinants |
|
|
93 | (2) |
|
|
95 | (2) |
|
5.10 Totally Antisymmetric Tensors |
|
|
97 | (11) |
|
5.11 Integration On Minkowski Space |
|
|
108 | (2) |
|
5.12 The Ghost Of Tensors Yet To Come |
|
|
110 | (3) |
|
Chapter 6 Lorentz Transformation, II |
|
|
113 | (16) |
|
6.1 Decomposition Into Rotations And Boosts |
|
|
113 | (6) |
|
6.2 Infinitesimal Lorentz Transformation |
|
|
119 | (1) |
|
6.3 Spinor Representation Of Lorentz Transformations |
|
|
120 | (3) |
|
6.4 Thomas-Wigner Rotation |
|
|
123 | (6) |
|
Chapter 7 Particle Dynamics |
|
|
129 | (18) |
|
7.1 Proper Time, Four-Velocity, And Four-Acceleration |
|
|
129 | (3) |
|
7.2 The Energy-Momentum Four-Vector |
|
|
132 | (2) |
|
7.3 Action Principle For Particles |
|
|
134 | (2) |
|
7.4 Kepler Problem In Special Relativity |
|
|
136 | (2) |
|
7.5 Covariant Euler-Lagrange Equation |
|
|
138 | (2) |
|
7.6 Particle Conservation Laws |
|
|
140 | (3) |
|
7.7 Energy-Momentum Conservation |
|
|
143 | (4) |
|
Chapter 8 Covariant Electrodynamics |
|
|
147 | (18) |
|
8.1 Electromagnetism In Space And Time |
|
|
147 | (3) |
|
8.2 Sources In Spacetime: The Four-Current |
|
|
150 | (1) |
|
8.3 Conservation In Spacetime: Spacelike Hypersurfaces |
|
|
151 | (2) |
|
|
153 | (1) |
|
8.5 Maxwell Equations In Covariant Form: Field Tensor |
|
|
153 | (2) |
|
8.6 Lorentz Transformation Of E And B Fields |
|
|
155 | (1) |
|
8.7 Lorentz Force As A Relativistic Effect |
|
|
156 | (1) |
|
8.8 Invariants Of The Electromagnetic Field |
|
|
157 | (1) |
|
8.9 Action Principle For Charged Particles |
|
|
158 | (3) |
|
8.10 Gauge Invariance And Charge Conservation |
|
|
161 | (4) |
|
Chapter 9 Energy-Momentum Of Fields |
|
|
165 | (12) |
|
9.1 Symmetries And Conservation Laws |
|
|
165 | (2) |
|
9.2 Spacetime Homogeneity: Energy-Momentum Tensor |
|
|
167 | (2) |
|
9.3 Spacetime Isotropy: Angular Momentum Tensor |
|
|
169 | (2) |
|
9.4 Symmetric Energy-Momentum Tensor |
|
|
171 | (1) |
|
9.5 The Electromagnetic Field |
|
|
172 | (5) |
|
Chapter 10 Relativistic Hydrodynamics |
|
|
177 | (8) |
|
10.1 Nonrelativistic Hydrodynamics |
|
|
177 | (3) |
|
10.2 Energy-Momentum Tensor For Perfect Fluids |
|
|
180 | (1) |
|
10.3 Energy-Momentum Conservation |
|
|
181 | (1) |
|
10.4 Particle Number Conservation |
|
|
182 | (1) |
|
10.5 Covariant Equation Of Motion |
|
|
182 | (1) |
|
|
183 | (2) |
|
Chapter 11 Equivalence Of Local Gravity And Acceleration |
|
|
185 | (14) |
|
11.1 The Eotvos Experiment |
|
|
185 | (2) |
|
11.2 The Equivalence Principle |
|
|
187 | (1) |
|
11.3 Tidal Forces And Reference Frames |
|
|
187 | (4) |
|
11.4 Weak And Strong Equivalence Principles |
|
|
191 | (1) |
|
11.5 Spacetime Is Globally Curved, Locally Flat |
|
|
192 | (1) |
|
11.6 Energy Couples To Gravity |
|
|
192 | (2) |
|
11.7 Gravity Affects Time |
|
|
194 | (5) |
|
Chapter 12 Acceleration In Special Relativity |
|
|
199 | (18) |
|
|
199 | (6) |
|
|
205 | (2) |
|
12.3 Rotating Reference Frame |
|
|
207 | (4) |
|
|
211 | (1) |
|
12.5 Relativists Description Of Spin |
|
|
212 | (2) |
|
12.6 Covariant Spin Dynamics |
|
|
214 | (3) |
|
Chapter 13 Tensors On Manifolds |
|
|
217 | (24) |
|
|
217 | (4) |
|
13.2 Vector And Tensor Fields |
|
|
221 | (4) |
|
13.3 Integral Curves, Congruences, And Flows |
|
|
225 | (2) |
|
|
227 | (1) |
|
|
228 | (2) |
|
13.6 Submanifolds, Embeddings, And Hypersurfaces |
|
|
230 | (3) |
|
13.7 Differential Forms And Exterior Differentiation |
|
|
233 | (2) |
|
13.8 Integration On Manifolds |
|
|
235 | (6) |
|
Chapter 14 Differential Geometry |
|
|
241 | (34) |
|
14.1 Covariant Differentiation |
|
|
241 | (9) |
|
14.2 What Do The Connection Coefficients Tell Us? |
|
|
250 | (2) |
|
14.3 Parallel Transport And Geodesic Curves |
|
|
252 | (5) |
|
|
257 | (8) |
|
14.5 The Ricci Tensor And Scalar Field |
|
|
265 | (2) |
|
|
267 | (1) |
|
14.7 Isometries, Killing Vectors, And Conservation Laws |
|
|
268 | (2) |
|
14.8 Maximally Symmetric Spaces |
|
|
270 | (5) |
|
Chapter 15 General Relativity |
|
|
275 | (14) |
|
|
275 | (1) |
|
15.2 Weak, Static Gravity |
|
|
276 | (1) |
|
15.3 The Einstein Field Equation |
|
|
277 | (4) |
|
15.4 Lagrangian Formulation |
|
|
281 | (5) |
|
|
286 | (3) |
|
Chapter 16 The Schwarzschild Metric |
|
|
289 | (8) |
|
16.1 Static, Spherically Symmetric Spacetime Metrics |
|
|
289 | (1) |
|
16.2 Ricci Tensor For The Schwarzschild Metric |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
292 | (1) |
|
16.5 Spatial Geometry Of The Schwarzschild Metric |
|
|
293 | (4) |
|
Chapter 17 Physical Effects Of Schwarzschild Spacetime |
|
|
297 | (22) |
|
17.1 Geodesics In Schwarzschild Spacetime |
|
|
297 | (3) |
|
17.2 Particle Trajectories |
|
|
300 | (3) |
|
17.3 Radial Null Geodesics: Kruskal Coordinates |
|
|
303 | (1) |
|
17.4 Gravitational Deflection Of Light |
|
|
304 | (5) |
|
|
309 | (2) |
|
17.6 Gravitational Time Delay |
|
|
311 | (1) |
|
17.7 Parameterized Post-Newtonian Framework |
|
|
312 | (1) |
|
17.8 The Global Positioning System |
|
|
313 | (2) |
|
17.9 Spin Precession I: Geodetic Effect |
|
|
315 | (1) |
|
17.10 Weight Of An At-Rest Observer |
|
|
316 | (3) |
|
Chapter 18 Linearized Gravity |
|
|
319 | (20) |
|
18.1 Linearized Field Equation |
|
|
319 | (3) |
|
|
322 | (1) |
|
18.3 Far From A Slowly Varying Source |
|
|
323 | (2) |
|
18.4 Gravitomagnetism: Stationary Sources |
|
|
325 | (1) |
|
|
326 | (1) |
|
18.6 Slowly Rotating Source |
|
|
327 | (1) |
|
18.7 Spin Precession II: The Lense-Thirring Effect |
|
|
328 | (3) |
|
|
331 | (2) |
|
18.9 Energy-Momentum Of Gravitation |
|
|
333 | (6) |
|
Chapter 19 Relativistic Cosmology |
|
|
339 | (16) |
|
19.1 The Cosmological Principle |
|
|
339 | (1) |
|
19.2 A Coordinate System For Cosmology |
|
|
340 | (1) |
|
19.3 Spaces Of Constant Curvature |
|
|
340 | (2) |
|
19.4 Friedmann-Robertson-Walker Spacetime |
|
|
342 | (1) |
|
|
343 | (3) |
|
19.6 The Friedmann Equations |
|
|
346 | (1) |
|
|
347 | (1) |
|
19.8 Cosmological Redshift |
|
|
348 | (2) |
|
19.9 The Einstein Universe |
|
|
350 | (1) |
|
19.10 The De Sitter Universe |
|
|
350 | (1) |
|
|
351 | (2) |
|
19.12 The Friedmann Evolution Equation |
|
|
353 | (2) |
Appendix A Invariance of the wave equation |
|
355 | (2) |
Appendix B The Doppler effect |
|
357 | (2) |
Appendix C Topics in linear algebra |
|
359 | (4) |
Appendix D Topics in classical mechanics |
|
363 | (12) |
Appendix E Photon and particle orbits |
|
375 | (4) |
Bibliography |
|
379 | (4) |
Index |
|
383 | |