Atjaunināt sīkdatņu piekrišanu

E-grāmata: Core Statistical Concepts With Excel(R): An Interactive Modular Approach

(St Bonaventure University), (St Bonaventure University)
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Dec-2018
  • Izdevniecība: SAGE Publications Inc
  • Valoda: eng
  • ISBN-13: 9781544309071
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 82,09 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Dec-2018
  • Izdevniecība: SAGE Publications Inc
  • Valoda: eng
  • ISBN-13: 9781544309071
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Core Statistical Concepts with Excel® connects statistical concepts to applications with Excel® using practical research examples. The text jointly promotes an understanding of Excel® and a deeper knowledge of core concepts through practice. Authors Gregory J. Privitera and Darryl Mayeaux provide students step-by-step instruction for using Excel® software as a useful tool not only to manage but also analyze data—all through the use of key themes, features, and pedagogy: an emphasis on student learning, a focus on current research, and integration of Excel® to introduce statistical concepts.


Preface to the Instructor xv
To the Student xxi
Orientation to Excel xxiii
About the Authors xxix
SECTION I CENTRAL TENDENCY AND VARIABILITY
1(44)
Learning Unit 1 Mean, Median, and Mode
3(12)
Excel Toolbox
3(1)
Mean
4(4)
Median
8(1)
Mode
9(2)
Choosing an Appropriate Measure of Central Tendency
11(4)
Learning Unit 2 Variability
15(16)
Excel Toolbox
15(2)
Range
17(2)
Quartiles and Interquartiles
19(5)
Variance
24(4)
Standard Deviation
28(3)
Characteristics of the Standard Deviation
29(2)
Learning Unit 3 Shapes of Distributions
31(14)
Excel Toolbox
31(1)
Normal Distribution Created With Frequency Array Function
32(4)
Normal Distribution Created With a PivotTable
36(4)
Creating a Graph of a Frequency Distribution
40(1)
Skewed Distribution Created With a PivotTable
41(4)
SECTION II PROBABILITY
45(54)
Learning Unit 4 Probability and the Normal Distribution
47(18)
Excel Toolbox
47(1)
Calculating Probability
48(2)
Expected Value and the Binomial Distribution
50(4)
The Mean of a Binomial Distribution
50(1)
The Variance and Standard Deviation of a Binomial Distribution
51(1)
Actual Values From an Unbiased "Coin"
51(3)
Relative Frequency and Probability
54(1)
Normal Distribution
55(10)
Characteristics of the Normal Distribution
55(3)
The Normal Distribution and Standard Deviation
58(1)
Describing Departures From a Normal Distribution
59(6)
Learning Unit 5 The Standard Normal Distribution: z Scores
65(10)
Excel Toolbox
65(1)
The Standard Normal Distribution
66(3)
The Unit Normal Table: A Brief Introduction
69(6)
Learning Unit 6 Sampling Distributions
75(24)
Excel Toolbox
75(1)
Selecting Samples From Populations
76(4)
Inferential Statistics and Sampling Distributions
76(2)
Selecting a Sample: Who's In and Who's Out?
78(1)
Sampling Strategy: The Basis for Statistical Theory
79(1)
Sampling Strategy: Most Used in Behavioral Research
79(1)
Sampling Distributions: The Mean
80(6)
The Sample Mean Is an Unbiased Estimator (i)
81(1)
The Sample Mean Follows the Central Limit Theorem (ii)
82(2)
The Sample Mean Has a Minimum Variance (iii]
84(1)
Minimizing Standard Error
85(1)
Overview of the Sample Mean
86(1)
Computing Characteristics of the Sample Mean Using Excel
86(7)
Sampling Distributions: The Variance
93(3)
The Sample Variance Is an Unbiased Estimator (i)
94(1)
The Sample Variance Follows the Skewed Distribution Rule (ii)
95(1)
The Sample Variance Does Not Have Minimum Variance (iii)
95(1)
Overview of the Sample Variance
96(1)
Computing Characteristics of the Sample Variance Using Excel
96(3)
SECTION III EVALUATING THE NATURE OF EFFECTS
99(26)
Learning Unit 7 Hypothesis Testing: Significance, Effect Size, and Confidence Intervals
101(14)
Inferential Statistics and Hypothesis Testing
101(2)
Four Steps to Hypothesis Testing
103(3)
Making a Decision: Types of Error
106(3)
Decision: Retain the Null Hypothesis
107(1)
Decision: Reject the Null Hypothesis
108(1)
Nondirectional and Directional Alternatives to the Null Hypothesis
109(2)
Effect Size
111(1)
Estimation and Confidence Intervals
111(1)
Delineating Statistical Effects for Hypothesis Testing
112(3)
Learning Unit 8 Power
115(10)
Detecting "Effects"
115(1)
Effect Size, Power, and Sample Size
116(9)
The Relationship Between Effect Size and Power
116(6)
The Relationship Between Sample Size and Power
122(3)
SECTION IV COMPARING MEANS: SIGNIFICANCE TESTING, EFFECT SIZE, AND CONFIDENCE INTERVALS
125(112)
Learning Unit 9 T Tests: One-Sample, Two-Independent-Sample, and Related-Samples Designs
127(38)
Excel Toolbox
127(1)
Origins of the t Tests
128(3)
The Degrees of Freedom
129(2)
Computing the One-Sample t Test
131(12)
Effect Size for the One-Sample t Test
136(3)
Confidence Intervals for the One-Sample t Test
139(2)
Computing the One-Sample t Test Using the Analysis Toolpak
141(2)
Computing the Two-Independent-Sample t Test
143(12)
Effect Size for the Two-Independent-Sample t Test
148(3)
Confidence Intervals for the Two-Independent-Sample t Test
151(2)
Computing the Two-Independent-Sample (Test Using the Analysis Toolpak
153(2)
Computing the Related-Samples t Test
155(10)
Effect size for the Related-Samples t Test
160(1)
Confidence Intervals for the Related-Samples t Test
161(2)
Computing the Related-Samples f Test Using the Analysis Toolpak
163(2)
Learning Unit 10 One-Way Analysis of Variance: Between-Subjects and Repeated-Measures Designs
165(38)
Excel Toolbox
165(1)
An Introduction to Analysis of Variance (ANOVA)
166(2)
One-Way Between-Subjects ANOVA
168(18)
Computing the One-Way Between-Subjects ANOVA
171(10)
Measuring Effect Size With Eta Squared
181(1)
Post Hoc Test Using Tukeys HSD
181(4)
Computing the One-Way Between-Subjects ANOVA Using the Analysis Toolpak
185(1)
One-Way Within-Subjects ANOVA
186(12)
Computing the One-Way Within-Subjects ANOVA
187(11)
Measuring Effect Size With Partial Eta Squared'
198(1)
Post Hoc Test Using Tukey's HSD
198(5)
Computing the One-Way Between-Subjects ANOVA Using the Analysis Toolpak
200(3)
Learning Unit 11 Two-Way Analysis of Variance: Between-Subjects Factorial Design
203(34)
Excel Toolbox
203(1)
An Introduction to Factorial Design
204(3)
Structure and Notation for the Two-Way ANOVA
205(2)
Describing Variability: Main Effects and Interactions
207(6)
Sources of Variability
207(1)
Testing Main Effects
208(2)
Testing the Interaction
210(3)
Computing the Two-Way Between-Subjects ANOVA
213(14)
Analyzing Main Effects and Interactions
227(6)
The Interaction: Simple Main Effect Tests
227(5)
Main Effects: Pairwise Comparisons
232(1)
Measuring Effect Size With Eta Squared
233(1)
Computing the Two-Way Between-Subjects ANOVA Using the Analysis ToolPak
234(3)
SECTION V IDENTIFYING PATTERNS AND MAKING PREDICTIONS
237(42)
Learning Unit 12 Correlation
239(22)
Excel Toolbox
239(1)
The Structure of Data Used for Identifying Patterns
240(1)
Fundamentals of the Correlation
240(2)
The Direction of a Correlation
242(1)
The Strength of a Correlation
242(3)
The Pearson Correlation Coefficient
245(5)
Computing the Pearson Correlation Coefficient
246(4)
Effect Size: The Coefficient of Determination
250(1)
Hypothesis Testing: Testing for Significance
250(2)
Limitations in Interpretation: Causality, Outliers, and Restriction of Range
252(3)
Causality
252(2)
Outliers
254(1)
Restriction of Range
254(1)
An Alternative to Pearson for Ranked Data: Spearman
255(3)
An Overview of Other Alternatives to Pearson
258(3)
Learning Unit 13 Linear Regression
261(18)
Excel Toolbox
261(1)
Fundamentals of Linear Regression
262(3)
The Regression Line
263(1)
The Equation of the Regression Line
263(2)
Using the Method of Least Squares to Find the Regression Line
265(5)
Using Regression to Determine Significance
270(5)
Computing the Analysis of Regression With the Analysis ToolPak
275(4)
Appendix A Core Statistical Concepts 279(22)
A1 Normal and Skewed Distributions
279(3)
A2 Scales of Measurement
282(2)
A3 Outliers
284(1)
A4 The Empirical Rule for Normal Distributions
285(1)
A5 Chebyshev's Theorem for Any Type of Distribution
286(1)
A6 Expected Value as a Long-Term Mean
287(1)
A7 The Informativeness of the Mean and Standard Deviation for Finding Probabilities
288(2)
A8 Comparing Differences Between Two Groups
290(2)
A9 Calculation and Interpretation of the Pooled Sample Variance
292(1)
A10 Reducing Standard Error by Computing Difference Scores
293(2)
A11 Categories of Related-Samples Designs
295(3)
A12 Degrees of Freedom for Parametric Tests
298(3)
Appendix B Global Excel Skills 301(12)
B1 Viewing in Cells the Functions or Formulas Versus the Results of Those Functions or Formulas
301(1)
B2 Formatting Cells: Decimals, Alignment, Merge Cells, Fonts, Bold, Borders, Superscripts, Subscripts
301(2)
B3 Freezing the Display of Some Rows and Columns
303(1)
B4 Highlighting Portions of Spreadsheet, Pasting, or Filling
304(1)
B5 Sorting Data in a Spreadsheet
305(1)
B6 Anchoring Cell References
306(1)
B7 Inserting (Creating] and Formatting a Chart (Graph of Data]
307(5)
B8 Inserting Equations
312(1)
Appendix C Statistical Tables 313(16)
C1 The Unit Normal Table
313(4)
C2 Critical Values for the f Distribution
317(2)
C3 Critical Values for the F Distribution
319(3)
C4 The Studentized Range Statistic (a;)
322(2)
C5 Critical Values for the Pearson Correlation
324(2)
C6 Critical Values for the Spearman Correlation
326(3)
Glossary 329(8)
References 337(2)
Index 339