|
|
xix | |
|
|
xxiii | |
Preface |
|
xxv | |
|
Section I Background universe |
|
|
|
Chapter 1 Cosmological models |
|
|
3 | (26) |
|
|
3 | (1) |
|
1.2 Synchronous Reference Frame |
|
|
3 | (2) |
|
1.3 Friedmann-Robertson-Walker Metric |
|
|
5 | (5) |
|
|
6 | (1) |
|
1.3.2 Spatial sector of FRW space-time |
|
|
7 | (3) |
|
1.3.3 FRW metric in trigonometric form |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.5 Cosmological Constant |
|
|
11 | (1) |
|
|
12 | (1) |
|
1.7 Cosmological Parameters |
|
|
13 | (1) |
|
1.8 Dust-Filled Universes |
|
|
14 | (2) |
|
|
14 | (1) |
|
1.8.2 Flat or open universe |
|
|
15 | (1) |
|
|
16 | (8) |
|
|
16 | (2) |
|
1.9.2 Einstein static model |
|
|
18 | (1) |
|
|
18 | (1) |
|
1.9.4 Closed Friedmann universe |
|
|
19 | (2) |
|
1.9.5 Einstein-de Sitter universe |
|
|
21 | (1) |
|
1.9.6 Open Friedmann universe |
|
|
21 | (1) |
|
|
22 | (2) |
|
|
24 | (1) |
|
|
25 | (4) |
|
Chapter 2 Measurable properties of FRW models |
|
|
29 | (28) |
|
|
29 | (1) |
|
|
29 | (2) |
|
2.2.1 Cosmological redshift |
|
|
30 | (1) |
|
|
30 | (1) |
|
2.3 Comoving Distances and Coordinates |
|
|
31 | (7) |
|
2.3.1 Closed Friedmann model |
|
|
33 | (1) |
|
2.3.2 Einstein-de Sitter model |
|
|
33 | (1) |
|
2.3.3 Open Friedmann model |
|
|
33 | (2) |
|
|
35 | (1) |
|
|
35 | (3) |
|
2.4 Angular Diameter Distance VA |
|
|
38 | (3) |
|
2.4.1 Closed Friedmann model |
|
|
38 | (1) |
|
2.4.2 Einstein-de Sitter model |
|
|
39 | (1) |
|
2.4.3 Open Friedmann model |
|
|
39 | (2) |
|
|
41 | (1) |
|
2.5 Luminosity Distance DL |
|
|
41 | (2) |
|
2.6 Comoving Volume and Number Counts |
|
|
43 | (1) |
|
|
44 | (3) |
|
|
45 | (1) |
|
|
46 | (1) |
|
2.8 Ho and Age of Universe |
|
|
47 | (4) |
|
|
48 | (2) |
|
|
50 | (1) |
|
2.9 Supernovae Ia and Dark Energy |
|
|
51 | (3) |
|
|
54 | (1) |
|
|
55 | (2) |
|
Chapter 3 Hot Big Bang model |
|
|
57 | (28) |
|
|
57 | (1) |
|
3.2 Cosmic Microwave Background |
|
|
57 | (2) |
|
|
59 | (5) |
|
3.3.1 Baryon-to-photon ratio |
|
|
61 | (1) |
|
|
61 | (1) |
|
3.3.3 Radiation-dominated universe |
|
|
62 | (2) |
|
3.4 Neutron-To-Baryon Ratio |
|
|
64 | (3) |
|
3.5 Neutrino Cosmic Background |
|
|
67 | (2) |
|
3.6 Refined Estimate Of XN |
|
|
69 | (1) |
|
3.7 Primordial Helium Production |
|
|
70 | (3) |
|
3.8 Primordial Deuterium and Light Elements |
|
|
73 | (2) |
|
|
75 | (7) |
|
|
76 | (1) |
|
3.9.2 Out-of-equilibrium recombination |
|
|
77 | (3) |
|
3.9.3 Last scattering surface |
|
|
80 | (2) |
|
|
82 | (1) |
|
|
83 | (2) |
|
|
85 | (24) |
|
|
85 | (1) |
|
4.2 Puzzles of Standard Model |
|
|
85 | (5) |
|
|
85 | (3) |
|
|
88 | (2) |
|
4.3 Cosmic Inflation As Solution |
|
|
90 | (2) |
|
|
92 | (1) |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
96 | (8) |
|
4.7.1 Exponential potential |
|
|
97 | (3) |
|
4.7.2 Power law potential |
|
|
100 | (4) |
|
|
104 | (1) |
|
|
105 | (4) |
|
Section II Structure formation: A Newtonian approach |
|
|
|
Chapter 5 Gravitational instability scenario |
|
|
109 | (24) |
|
|
109 | (1) |
|
5.2 Creating Spherical "Seed" |
|
|
109 | (2) |
|
5.3 Formation of Cosmic Structure |
|
|
111 | (3) |
|
5.4 Linear Approximations |
|
|
114 | (5) |
|
5.4.1 Density fluctuations |
|
|
116 | (1) |
|
5.4.2 Peculiar velocities |
|
|
117 | (1) |
|
5.4.3 Potential fluctuations |
|
|
118 | (1) |
|
|
118 | (1) |
|
5.5 Density Fluctuation Field |
|
|
119 | (3) |
|
5.5.1 Continuity equation |
|
|
120 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
5.6 Gravitational Instability Equation |
|
|
122 | (1) |
|
5.7 Gravity-Dominated Regime |
|
|
123 | (3) |
|
|
123 | (1) |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
126 | (3) |
|
5.8.1 Rotational velocities |
|
|
127 | (1) |
|
5.8.2 Potential velocities |
|
|
127 | (2) |
|
5.9 Pressure-Dominated Regime |
|
|
129 | (1) |
|
|
130 | (1) |
|
|
131 | (2) |
|
Chapter 6 Density fluctuations: Statistical tools and observables |
|
|
133 | (28) |
|
|
133 | (1) |
|
6.2 Random Gaussian Fields |
|
|
133 | (3) |
|
6.3 Spectral Decomposition |
|
|
136 | (1) |
|
6.4 Variance of Density Fluctuation Field On Given Scale |
|
|
137 | (1) |
|
|
138 | (1) |
|
6.6 Estimators of Galaxy-Galaxy Correlation Function |
|
|
139 | (2) |
|
|
141 | (4) |
|
6.7.1 Galaxy-galaxy correlation function on 0.1 < r(h-1Mpc) < 30 |
|
|
143 | (1) |
|
6.7.2 Cluster-cluster correlation function on 1 < r(h-1Mpc) < 100 |
|
|
144 | (1) |
|
|
145 | (4) |
|
6.9 Peculiar Velocities As Random Field |
|
|
149 | (1) |
|
6.10 Cmb Dipole and Large-Scale Flows |
|
|
150 | (3) |
|
|
150 | (2) |
|
|
152 | (1) |
|
6.11 Pairwise Velocity Dispersion and β Parameter |
|
|
153 | (4) |
|
6.11.1 Plane-parallel limit in linear theory |
|
|
153 | (2) |
|
6.11.2 Biased galaxy formation |
|
|
155 | (1) |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
158 | (3) |
|
Chapter 7 Luminous universe |
|
|
161 | (18) |
|
|
161 | (1) |
|
|
161 | (3) |
|
|
164 | (2) |
|
7.4 Drag Epoch and Sound Horizon |
|
|
166 | (2) |
|
7.5 Diffusion-Dominated Regime |
|
|
168 | (1) |
|
|
169 | (3) |
|
7.7 Expected Cmb Anisotropy: Back-of-Envelope Calculation |
|
|
172 | (1) |
|
7.8 Isocurvature Perturbations |
|
|
173 | (2) |
|
|
175 | (1) |
|
|
176 | (1) |
|
|
177 | (2) |
|
|
179 | (26) |
|
|
179 | (1) |
|
8.2 Flat Massive Neutrino-Dominated Universe |
|
|
180 | (2) |
|
8.3 Neutrino Free Streaming |
|
|
182 | (2) |
|
8.4 Gravitational Instability In Massive Neutrino-Dominated Universe |
|
|
184 | (3) |
|
8.5 Two-Component Universe: Baryons and Massive Neutrinos |
|
|
187 | (3) |
|
8.6 Drawbacks of Hdm Scenario |
|
|
190 | (2) |
|
8.7 Weakly Interacting Massive Particles |
|
|
192 | (1) |
|
8.8 Gravitational Instability In CDM Component |
|
|
192 | (2) |
|
8.9 CDM Transfer Function |
|
|
194 | (2) |
|
8.10 RMS CDM Density Fluctuations |
|
|
196 | (2) |
|
|
198 | (2) |
|
|
200 | (5) |
|
Section III Structure formation: A relativistic approach |
|
|
|
Chapter 9 Lemaitre-Tolman-Bondi solution |
|
|
205 | (24) |
|
|
205 | (1) |
|
9.2 Geometry of Space-Time |
|
|
205 | (1) |
|
9.3 Conservation Equations |
|
|
206 | (1) |
|
|
207 | (2) |
|
9.4.1 Time-space component |
|
|
207 | (1) |
|
9.4.2 Time-time component |
|
|
208 | (1) |
|
9.4.3 Mass function m(r, t) |
|
|
208 | (1) |
|
9.4.4 g11 element of metric tensor |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (2) |
|
9.7 Time-Time Component of Metric Tensor |
|
|
212 | (1) |
|
9.8 Pressureless Configuration |
|
|
213 | (1) |
|
9.8.1 Proper time and coordinate time |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
9.9 Dynamics of Pressureless Mass Distribution |
|
|
214 | (2) |
|
9.10 Parabolic Uniform Case |
|
|
216 | (1) |
|
9.11 Formation of Cosmic Structure |
|
|
217 | (2) |
|
9.12 Formation of Cosmic Void |
|
|
219 | (2) |
|
9.13 Accelerating Universe? |
|
|
221 | (5) |
|
|
226 | (1) |
|
|
227 | (2) |
|
Chapter 10 Structure formation: Relativistic approach I |
|
|
229 | (30) |
|
|
229 | (1) |
|
|
229 | (1) |
|
10.3 Perturbed Frw Space-Time |
|
|
230 | (1) |
|
|
231 | (1) |
|
|
232 | (1) |
|
10.6 Perturbed Energy-Momentum Tensor |
|
|
233 | (1) |
|
|
234 | (3) |
|
10.7.1 Perturbed metric tensor |
|
|
235 | (1) |
|
10.7.2 Perturbed energy-momentum tensor |
|
|
236 | (1) |
|
10.7.3 Different gauge choices |
|
|
237 | (1) |
|
10.8 Perturbed Field Equations In Synchronous Gauge |
|
|
237 | (1) |
|
10.9 Perturbed Conservation Laws In Synchronous Gauge |
|
|
238 | (2) |
|
10.10 Super-Horizon Perturbations In Synchronous Gauge |
|
|
240 | (2) |
|
10.10.1 Matter-dominated universes |
|
|
240 | (1) |
|
10.10.2 Radiation-dominated universes |
|
|
240 | (1) |
|
|
241 | (1) |
|
10.11 Sub-Horizon Perturbations In Synchronous Gauge |
|
|
242 | (1) |
|
10.12 Gauge-Invariant Formalism |
|
|
243 | (1) |
|
10.13 Perturbations In Longitudinal Gauge |
|
|
244 | (2) |
|
10.14 Gauge-Invariant Evolution of Scalar Degrees of Freedom |
|
|
246 | (1) |
|
10.15 Perturbed Conservation Laws In Longitudinal Gauge |
|
|
247 | (1) |
|
10.16 Super-Horizon Perturbations In Longitudinal Gauge |
|
|
247 | (4) |
|
|
251 | (1) |
|
|
252 | (7) |
|
Chapter 11 Structure formation: Relativistic approach II |
|
|
259 | (20) |
|
|
259 | (1) |
|
11.2 Synchronous Gauge: Liouville Equation |
|
|
259 | (3) |
|
|
259 | (2) |
|
11.2.2 Massless particles |
|
|
261 | (1) |
|
11.3 Synchronous Gauge: Boltzmann Equation |
|
|
262 | (3) |
|
11.4 Synchronous Gauge: Coupling of Matter and Radiation |
|
|
265 | (1) |
|
11.5 Synchronous Gauge: Tight Coupling Limit |
|
|
266 | (1) |
|
11.6 Synchronous Gauge: Photon Diffusion |
|
|
267 | (2) |
|
11.7 Synchronous Gauge: Energy-Momentum Tensor for Collisionless Particles |
|
|
269 | (2) |
|
11.8 Longitudinal Gauge: Liouville Equation |
|
|
271 | (4) |
|
|
275 | (1) |
|
|
276 | (3) |
|
Chapter 12 CMB temperature anisotropy |
|
|
279 | (30) |
|
|
279 | (1) |
|
12.2 Flat CDM Universe In Synchronous Gauge |
|
|
279 | (1) |
|
12.3 Free Streaming Solution |
|
|
280 | (3) |
|
12.4 CMB Anisotropy Correlation Function |
|
|
283 | (2) |
|
12.5 CMB Dipole Anisotropy |
|
|
285 | (1) |
|
|
286 | (3) |
|
|
287 | (2) |
|
12.7 First Detection Of CMB Anisotropies: COBE DMR Experiment |
|
|
289 | (1) |
|
12.8 CMB Angular Power Spectrum |
|
|
290 | (3) |
|
|
293 | (6) |
|
12.9.1 Numerical approach |
|
|
294 | (4) |
|
12.9.2 Analytical approach |
|
|
298 | (1) |
|
12.10 Dependence On Cosmological Parameters |
|
|
299 | (7) |
|
12.10.1 Lowering Δ0 (ΔA = 0) |
|
|
299 | (1) |
|
12.10.2 Lowering Δ0 (Δk = 0) |
|
|
300 | (1) |
|
12.10.3 Effect of baryons |
|
|
301 | (2) |
|
12.10.4 Effect of late reheating of intergalactic medium |
|
|
303 | (3) |
|
|
306 | (1) |
|
|
307 | (2) |
|
Chapter 13 CMB polarisation |
|
|
309 | (32) |
|
|
309 | (1) |
|
|
309 | (2) |
|
13.3 Source Term In Radiative Transfer Equation |
|
|
311 | (4) |
|
13.4 CMB Polarisation Induced By Scalar Modes |
|
|
315 | (2) |
|
13.5 CMB Polarisation Induced By Tensor Modes |
|
|
317 | (2) |
|
13.6 Generation Of Fluctuations During Inflation |
|
|
319 | (5) |
|
|
321 | (1) |
|
|
322 | (1) |
|
13.6.3 Scalar and tensor modes |
|
|
323 | (1) |
|
13.7 Statistics of CMB Polarisation Pattern |
|
|
324 | (1) |
|
13.8 CMB Polarisation As Cosmological Tool |
|
|
325 | (5) |
|
|
330 | (1) |
|
|
331 | (10) |
|
Section IV Future perspectives |
|
|
|
Chapter 14 Precision cosmology |
|
|
341 | (20) |
|
|
341 | (1) |
|
14.2 Observations of CMB Temperature Anisotropy |
|
|
341 | (7) |
|
14.2.1 Polarization anisotropy |
|
|
344 | (4) |
|
14.3 Baryon Acoustic Oscillations |
|
|
348 | (3) |
|
|
348 | (1) |
|
|
349 | (2) |
|
14.3.3 Correlation baryon peak |
|
|
351 | (1) |
|
14.4 From 42 to ~420 High-Redshift SN IA |
|
|
351 | (2) |
|
14.5 Direct Vs. Indirect H0 Measurements |
|
|
353 | (1) |
|
|
354 | (3) |
|
|
357 | (2) |
|
14.7.1 Effective neutrino number |
|
|
357 | (1) |
|
|
358 | (1) |
|
|
359 | (2) |
|
|
361 | (8) |
|
|
361 | (3) |
|
A.1.1 Contravariant vectors |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (1) |
|
A.2 Operation With Tensors |
|
|
364 | (1) |
|
A.3 How to Recognise Tensors |
|
|
365 | (2) |
|
|
367 | (1) |
|
|
368 | (1) |
|
Appendix B Riemannian spaces |
|
|
369 | (10) |
|
|
369 | (3) |
|
|
369 | (1) |
|
B.1.2 Lowering and raising indices |
|
|
370 | (1) |
|
B.1.3 Contra- and covariant components of vectors |
|
|
370 | (2) |
|
B.2 Covariant Derivatives |
|
|
372 | (1) |
|
|
373 | (2) |
|
B.3.1 Locally flat reference frame |
|
|
374 | (1) |
|
B.3.2 Covariant derivative of metric tensor |
|
|
374 | (1) |
|
|
375 | (1) |
|
|
376 | (1) |
|
|
377 | (2) |
|
Appendix C Curvature of space |
|
|
379 | (10) |
|
|
379 | (1) |
|
|
380 | (2) |
|
C.3 Properties of Riemann Tensor |
|
|
382 | (1) |
|
|
383 | (2) |
|
|
385 | (1) |
|
|
386 | (3) |
|
Appendix D From special to general relativity |
|
|
389 | (8) |
|
|
389 | (1) |
|
D.2 Proper Time and Clock Synchronization |
|
|
390 | (1) |
|
D.3 Proper Spatial Distances |
|
|
391 | (1) |
|
|
392 | (1) |
|
D.5 Equivalence Principle |
|
|
393 | (1) |
|
|
393 | (2) |
|
|
395 | (1) |
|
|
396 | (1) |
|
Appendix E Field equations in vacuum |
|
|
397 | (6) |
|
|
397 | (1) |
|
E.2 Gravitational Redshift |
|
|
398 | (1) |
|
E.3 Field Equations In Vacuum |
|
|
399 | (1) |
|
|
399 | (1) |
|
E.5 Einstein-Hilbert Action |
|
|
400 | (3) |
|
Appendix F Field equations in non-empty space |
|
|
403 | (20) |
|
F.1 Energy-Momentum Tensor |
|
|
403 | (1) |
|
F.2 Covariant Divergence of Energy-Momentum Tensor |
|
|
404 | (2) |
|
F3 Field Equations In Presence of Matter |
|
|
406 | (17) |
Index |
|
423 | (4) |
Author Bio |
|
427 | |