Preface |
|
xi | |
|
Chapter 1 Setting the Stage |
|
|
1 | (40) |
|
§1.1 Riemann-Stieltjes integrals |
|
|
1 | (11) |
|
|
12 | (9) |
|
|
21 | (8) |
|
§1.4 Locally compact spaces |
|
|
29 | (8) |
|
|
37 | (4) |
|
Chapter 2 Elements of Measure Theory |
|
|
41 | (52) |
|
§2.1 Positive linear functionals on C(X) |
|
|
41 | (1) |
|
§2.2 The Radon measure space |
|
|
42 | (9) |
|
§2.3 Measurable functions |
|
|
51 | (5) |
|
§2.4 Integration with respect to a measure |
|
|
56 | (15) |
|
§2.5 Convergence theorems |
|
|
71 | (7) |
|
|
78 | (6) |
|
|
84 | (9) |
|
Chapter 3 A Hilbert Space Interlude |
|
|
93 | (14) |
|
§3.1 Introduction to Hilbert space |
|
|
93 | (5) |
|
|
98 | (5) |
|
§3.3 The Riesz Representation Theorem |
|
|
103 | (4) |
|
Chapter 4 A Return to Measure Theory |
|
|
107 | (64) |
|
§4.1 The Lebesgue-Radon-Nikodym Theorem |
|
|
107 | (7) |
|
§4.2 Complex functions and measures |
|
|
114 | (5) |
|
§4.3 Linear functionals on C(X) |
|
|
119 | (5) |
|
§4.4 Linear functionals on Co(X) |
|
|
124 | (3) |
|
§4.5 Functions of bounded variation |
|
|
127 | (2) |
|
§4.6 Linear functionals on Lp-spaces |
|
|
129 | (4) |
|
|
133 | (8) |
|
§4.8 Lebesgue measure on Rd |
|
|
141 | (3) |
|
§4.9 Differentiation on Rd |
|
|
144 | (7) |
|
§4.10 Absolutely continuous functions |
|
|
151 | (5) |
|
|
156 | (5) |
|
§4.12 The Fourier transform |
|
|
161 | (10) |
|
Chapter 5 Linear Transformations |
|
|
171 | (42) |
|
|
171 | (4) |
|
|
175 | (4) |
|
§5.3 Isomorphic Hilbert spaces |
|
|
179 | (4) |
|
|
183 | (7) |
|
§5.5 The direct sum of Hilbert spaces |
|
|
190 | (5) |
|
§5.6 Compact linear transformations |
|
|
195 | (7) |
|
§5.7 The Spectral Theorem |
|
|
202 | (3) |
|
§5.8 Some applications of the Spectral Theorem |
|
|
205 | (5) |
|
|
210 | (3) |
|
|
213 | (24) |
|
§6.1 Finite-dimensional spaces |
|
|
213 | (3) |
|
§6.2 Sums and quotients of normed spaces |
|
|
216 | (4) |
|
§6.3 The Hahn-Banach Theorem |
|
|
220 | (6) |
|
|
226 | (2) |
|
§6.5 The Open Mapping and Closed Graph Theorems |
|
|
228 | (4) |
|
§6.6 Complemented subspaces |
|
|
232 | (2) |
|
§6.7 The Principle of Uniform Boundedness |
|
|
234 | (3) |
|
Chapter 7 Locally Convex Spaces |
|
|
237 | (14) |
|
§7.1 Basics of locally convex spaces |
|
|
237 | (6) |
|
§7.2 Metrizable locally convex spaces |
|
|
243 | (1) |
|
§7.3 Geometric consequences |
|
|
244 | (7) |
|
|
251 | (26) |
|
|
251 | (9) |
|
§8.2 The dual of a quotient space and of a subspace |
|
|
260 | (3) |
|
|
263 | (3) |
|
§8.4 The Krein-Milman Theorem |
|
|
266 | (4) |
|
§8.5 The Stone-Weierstrass Theorem |
|
|
270 | (7) |
|
Chapter 9 Operators on a Banach Space |
|
|
277 | (10) |
|
|
277 | (5) |
|
|
282 | (5) |
|
Chapter 10 Banach Algebras and Spectral Theory |
|
|
287 | (32) |
|
§10.1 Elementary properties and examples |
|
|
287 | (3) |
|
§10.2 Ideals and quotients |
|
|
290 | (2) |
|
|
292 | (5) |
|
|
297 | (5) |
|
§10.5 The spectrum of an operator |
|
|
302 | (8) |
|
§10.6 The spectrum of a compact operator |
|
|
310 | (4) |
|
§10.7 Abelian Banach algebras |
|
|
314 | (5) |
|
|
319 | (36) |
|
§11.1 Elementary properties and examples |
|
|
319 | (4) |
|
§11.2 Abelian C*-algebras |
|
|
323 | (4) |
|
§11.3 Positive elements in a C*-algebra |
|
|
327 | (5) |
|
§11.4 A functional calculus for normal operators |
|
|
332 | (10) |
|
§11.5 The commutant of a normal operator |
|
|
342 | (3) |
|
§11.6 Multiplicity theory |
|
|
345 | (10) |
|
|
355 | (4) |
|
§A.1 Baire Category Theorem |
|
|
355 | (1) |
|
|
356 | (3) |
Bibliography |
|
359 | (2) |
List of Symbols |
|
361 | (2) |
Index |
|
363 | |