Atjaunināt sīkdatņu piekrišanu

E-grāmata: Course In Analysis, A - Vol. Ii: Differentiation And Integration Of Functions Of Several Variables, Vector Calculus

(Swansea Univ, Uk), (Swansea Univ, Uk)
  • Formāts: 788 pages
  • Izdošanas datums: 29-Jun-2016
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813140981
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 57,48 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 788 pages
  • Izdošanas datums: 29-Jun-2016
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813140981
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

'The authors give many examples, illustrations and exercises to help students digest the theory and they employ use of clear and neat notation throughout. I really appreciate their selection of exercises, since many of the problems develop simple techniques to be used later in the book or make connections of analysis with other parts of mathematics. There are also solutions to all of the exercises in the back of the book. As in the first volume there are some real gems in volume II. A Course in Analysis seems to be full of these little gems where the authors use the material or ask the readers to use the material to obtain results or examples that the reader will certainly see again in another context later in their studies of mathematics. Generally, the quality of exposition in both of the first two volumes is very high. I recommend these books.' (See Full Review)MAA ReviewsThis is the second volume of 'A Course in Analysis' and it is devoted to the study of mappings between subsets of Euclidean spaces. The metric, hence the topological structure is discussed as well as the continuity of mappings. This is followed by introducing partial derivatives of real-valued functions and the differential of mappings. Many chapters deal with applications, in particular to geometry (parametric curves and surfaces, convexity), but topics such as extreme values and Lagrange multipliers, or curvilinear coordinates are considered too. On the more abstract side results such as the Stone-Weierstrass theorem or the Arzela-Ascoli theorem are proved in detail. The first part ends with a rigorous treatment of line integrals.The second part handles iterated and volume integrals for real-valued functions. Here we develop the Riemann (-Darboux-Jordan) theory. A whole chapter is devoted to boundaries and Jordan measurability of domains. We also handle in detail improper integrals and give some of their applications.The final part of this volume takes up a first discussion of vector calculus. Here we present a working mathematician's version of Green's, Gauss' and Stokes' theorem. Again some emphasis is given to applications, for example to the study of partial differential equations. At the same time we prepare the student to understand why these theorems and related objects such as surface integrals demand a much more advanced theory which we will develop in later volumes.This volume offers more than 260 problems solved in complete detail which should be of great benefit to every serious student.
Preface v
Introduction vii
List of Symbols
xvii
Part 3 Differentiation of Functions of Several Variables
1(330)
1 Metric Spaces
3(20)
2 Convergence and Continuity in Metric Spaces
23(20)
3 More on Metric Spaces and Continuous Functions
43(16)
4 Continuous Mappings Between Subsets of Euclidean Spaces
59(18)
5 Partial Derivatives
77(16)
6 The Differential of a Mapping
93(18)
7 Curves in Rn
111(28)
8 Surfaces in R3. A First Encounter
139(18)
9 Taylor Formula and Local Extreme Values
157(22)
10 Implicit Functions and the Inverse Mapping Theorem
179(26)
11 Further Applications of the Derivatives
205(26)
12 Curvilinear Coordinates
231(24)
13 Convex Sets and Convex Functions in Rn
255(28)
14 Spaces of Continuous Functions as Banach Spaces
283(24)
15 Line Integrals
307(24)
Part 4 Integration of Functions of Several Variables
331(136)
16 Towards Volume Integrals in the Sense of Riemann
333(20)
17 Parameter Dependent and Iterated Integrals
353(14)
18 Volume Integrals on Hyper-Rectangles
367(22)
19 Boundaries in Rn and Jordan Measurable Sets
389(18)
20 Volume Integrals on Bounded Jordan Measurable Sets
407(24)
21 The Transformation Theorem: Result and Applications
431(18)
22 Improper Integrals and Parameter Dependent Integrals
449(18)
Part 5 Vector Calculus
467(92)
23 The Scope of Vector Calculus
469(6)
24 The Area of a Surface in R3 and Surface Integrals
475(20)
25 Gauss' Theorem in R3
495(24)
26 Stokes' Theorem in R2 and R3
519(26)
27 Gauss' Theorem for Rn
545(14)
Appendices
559(30)
Appendix I Vector Spaces and Linear Mappings
561(24)
Appendix II Two Postponed Proofs of Part 3
585(4)
Solutions to Problems of Part 3 589(108)
Solutions to Problems of Part 4 697(42)
Solutions to Problems of Part 5 739(16)
References 755(4)
Mathematicians Contributing to Analysis (Continued) 759(2)
Subject Index 761