Atjaunināt sīkdatņu piekrišanu

E-grāmata: Course on Large Deviations with an Introduction to Gibbs Measures

  • Formāts: 318 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 03-Dec-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470422226
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 100,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 318 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 03-Dec-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470422226
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This is an introductory course on the methods of computing asymptotics of probabilities of rare events: the theory of large deviations. The book combines large deviation theory with basic statistical mechanics, namely Gibbs measures with their variational characterization and the phase transition of the Ising model, in a text intended for a one semester or quarter course.

The book begins with a straightforward approach to the key ideas and results of large deviation theory in the context of independent identically distributed random variables. This includes Cramer's theorem, relative entropy, Sanov's theorem, process level large deviations, convex duality, and change of measure arguments.

Dependence is introduced through the interactions potentials of equilibrium statistical mechanics. The phase transition of the Ising model is proved in two different ways: first in the classical way with the Peierls argument, Dobrushin's uniqueness condition, and correlation inequalities and then a second time through the percolation approach.

Beyond the large deviations of independent variables and Gibbs measures, later parts of the book treat large deviations of Markov chains, the Gartner-Ellis theorem, and a large deviation theorem of Baxter and Jain that is then applied to a nonstationary process and a random walk in a dynamical random environment.

The book has been used with students from mathematics, statistics, engineering, and the sciences and has been written for a broad audience with advanced technical training. Appendixes review basic material from analysis and probability theory and also prove some of the technical results used in the text.
Preface xi
Part I Large deviations: General theory and i.i.d. processes
Chapter 1 Introductory discussion
3(14)
§1.1 Information-theoretic entropy
5(3)
§1.2 Thermodynamic entropy
8(4)
§1.3 Large deviations as useful estimates
12(5)
Chapter 2 The large deviation principle
17(18)
§2.1 Precise asymptotics on an exponential scale
17(3)
§2.2 Lower semicontinuous and tight rate functions
20(3)
§2.3 Weak large deviation principle
23(3)
§2.4 Aspects of Cramer's theorem
26(7)
§2.5 Limits, deviations, and fluctuations
33(2)
Chapter 3 Large deviations and asymptotics of integrals
35(14)
§3.1 Contraction principle
35(2)
§3.2 Varadhan's theorem
37(4)
§3.3 Bryc's theorem
41(2)
§3.4 Curie-Weiss model of ferromagnetism
43(6)
Chapter 4 Convex analysis in large deviation theory
49(18)
§4.1 Some elementary convex analysis
49(9)
§4.2 Rate function as a convex conjugate
58(3)
§4.3 Multidimensional Cramer theorem
61(6)
Chapter 5 Relative entropy and large deviations for empirical measures
67(16)
§5.1 Relative entropy
67(6)
§5.2 Sanov's theorem
73(5)
§5.3 Maximum entropy principle
78(5)
Chapter 6 Process level large deviations for i.i.d. fields
83(16)
§6.1 Setting
83(2)
§6.2 Specific relative entropy
85(6)
§6.3 Pressure and the large deviation principle
91(8)
Part II Statistical mechanics
Chapter 7 Formalism for classical lattice systems
99(22)
§7.1 Finite-volume model
99(2)
§7.2 Potentials and Hamiltonians
101(2)
§7.3 Specifications
103(5)
§7.4 Phase transition
108(2)
§7.5 Extreme Gibbs measures
110(2)
§7.6 Uniqueness for small potentials
112(9)
Chapter 8 Large deviations and equilibrium statistical mechanics
121(12)
§8.1 Thermodynamic limit of the pressure
121(3)
§8.2 Entropy and large deviations under Gibbs measures
124(3)
§8.3 Dobrushin-Lanford-Ruelle (DLR) variational principle
127(6)
Chapter 9 Phase transition in the Ising model
133(16)
§9.1 One-dimensional Ising model
136(2)
§9.2 Phase transition at low temperature
138(3)
§9.3 Case of no external field
141(5)
§9.4 Case of nonzero external field
146(3)
Chapter 10 Percolation approach to phase transition
149(12)
§10.1 Bernoulli bond percolation and random cluster measures
149(4)
§10.2 Ising phase transition revisited
153(8)
Part III Additional large deviation topics
Chapter 11 Further asymptotics for i.i.d. random variables
161(6)
§11.1 Refinement of Cramer's theorem
161(3)
§11.2 Moderate deviations
164(3)
Chapter 12 Large deviations through the limiting generating function
167(20)
§12.1 Essential smoothness and exposed points
167(8)
§12.2 Gartner-Ellis theorem
175(4)
§12.3 Large deviations for the current of particles
179(8)
Chapter 13 Large deviations for Markov chains
187(26)
§13.1 Relative entropy for kernels
187(4)
§13.2 Countable Markov chains
191(12)
§13.3 Finite Markov chains
203(10)
Chapter 14 Convexity criterion for large deviations
213(8)
Chapter 15 Nonstationary independent variables
221(12)
§15.1 Generalization of relative entropy and Sanov's theorem
221(2)
§15.2 Proof of the large deviation principle
223(10)
Chapter 16 Random walk in a dynamical random environment
233(26)
§16.1 Quenched large deviation principles
234(5)
§16.2 Proofs via the Baxter-Jain theorem
239(20)
Appendixes
Appendix A Analysis
259(14)
§A.1 Metric spaces and topology
259(3)
§A.2 Measure and integral
262(5)
§A.3 Product spaces
267(1)
§A.4 Separation theorem
268(1)
§A.5 Minimax theorem
269(4)
Appendix B Probability
273(20)
§B.1 Independence
274(1)
§B.2 Existence of stochastic processes
275(1)
§B.3 Conditional expectation
276(2)
§B.4 Weak topology of probability measures
278(4)
§B.5 First limit theorems
282(1)
§B.6 Ergodic theory
282(6)
§B.7 Stochastic ordering
288(5)
Appendix C Inequalities from statistical mechanics
293(4)
§C.1 Griffiths's inequality
293(1)
§C.2 Griffiths-Hurst-Sherman inequality
294(3)
Appendix D Nonnegative matrices
297(2)
Bibliography 299(6)
Notation index 305(6)
Author index 311(2)
General index 313
Firas Rassoul-Agha, University of Utah, Salt Lake City, UT, USA.

Timo Seppalainen, University of Wisconsin-Madison, WI, USA.