Introduction |
|
ix | |
Part Three Metric and topological spaces |
|
301 | (182) |
|
11 Metric spaces and normed spaces |
|
|
303 | (27) |
|
11.1 Metric spaces: examples |
|
|
303 | (6) |
|
|
309 | (3) |
|
11.3 Inner-product spaces |
|
|
312 | (5) |
|
11.4 Euclidean and unitary spaces |
|
|
317 | (2) |
|
|
319 | (4) |
|
11.6 *The Mazur-Ulam theorem* |
|
|
323 | (4) |
|
11.7 The orthogonal group Od |
|
|
327 | (3) |
|
12 Convergence, continuity and topology |
|
|
330 | (23) |
|
12.1 Convergence of sequences in a metric space |
|
|
330 | (7) |
|
12.2 Convergence and continuity of mappings |
|
|
337 | (5) |
|
12.3 The topology of a metric space |
|
|
342 | (7) |
|
12.4 Topological properties of metric spaces |
|
|
349 | (4) |
|
|
353 | (33) |
|
|
353 | (8) |
|
13.2 The product topology |
|
|
361 | (5) |
|
|
366 | (4) |
|
13.4 Separation properties |
|
|
370 | (5) |
|
13.5 Countability properties |
|
|
375 | (4) |
|
13.6 *Examples and counterexamples* |
|
|
379 | (7) |
|
|
386 | (45) |
|
|
386 | (9) |
|
|
395 | (5) |
|
|
400 | (6) |
|
14.4 *Tietze's extension theorem* |
|
|
406 | (2) |
|
14.5 The completion of metric and normed spaces |
|
|
408 | (4) |
|
14.6 The contraction mapping theorem |
|
|
412 | (8) |
|
14.7 *Baire's category theorem* |
|
|
420 | (11) |
|
|
431 | (33) |
|
15.1 Compact topological spaces |
|
|
431 | (4) |
|
15.2 Sequentially compact topological spaces |
|
|
435 | (4) |
|
15.3 Totally bounded metric spaces |
|
|
439 | (2) |
|
15.4 Compact metric spaces |
|
|
441 | (4) |
|
15.5 Compact subsets of C(K) |
|
|
445 | (3) |
|
15.6 *The Hausdorff metric* |
|
|
448 | (4) |
|
15.7 Locally compact topological spaces |
|
|
452 | (5) |
|
15.8 Local uniform convergence |
|
|
457 | (3) |
|
15.9 Finite-dimensional normed spaces |
|
|
460 | (4) |
|
|
464 | (19) |
|
|
464 | (6) |
|
|
470 | (3) |
|
|
473 | (2) |
|
|
475 | (3) |
|
16.5 *More space-filling paths* |
|
|
478 | (2) |
|
|
480 | (3) |
Part Four Functions of a vector variable |
|
483 | (108) |
|
17 Differentiating functions of a vector variable |
|
|
485 | (28) |
|
17.1 Differentiating functions of a vector variable |
|
|
485 | (6) |
|
17.2 The mean-value inequality |
|
|
491 | (5) |
|
17.3 Partial and directional derivatives |
|
|
496 | (4) |
|
17.4 The inverse mapping theorem |
|
|
500 | (2) |
|
17.5 The implicit function theorem |
|
|
502 | (2) |
|
|
504 | (9) |
|
18 Integrating functions of several variables |
|
|
513 | (32) |
|
18.1 Elementary vector-valued integrals |
|
|
513 | (2) |
|
18.2 Integrating functions of several variables |
|
|
515 | (2) |
|
18.3 Integrating vector-valued functions |
|
|
517 | (8) |
|
18.4 Repeated integration |
|
|
525 | (5) |
|
|
530 | (4) |
|
18.6 Linear change of variables |
|
|
534 | (2) |
|
18.7 Integrating functions on Euclidean space |
|
|
536 | (1) |
|
|
537 | (6) |
|
18.9 Differentiation under the integral sign |
|
|
543 | (2) |
|
19 Differential manifolds in Euclidean space |
|
|
545 | (46) |
|
19.1 Differential manifolds in Euclidean space |
|
|
545 | (3) |
|
|
548 | (4) |
|
19.3 One-dimensional differential manifolds |
|
|
552 | (3) |
|
19.4 Lagrange multipliers |
|
|
555 | (10) |
|
19.5 Smooth partitions of unity |
|
|
565 | (3) |
|
19.6 Integration over hypersurfaces |
|
|
568 | (4) |
|
19.7 The divergence theorem |
|
|
572 | (10) |
|
|
582 | (5) |
|
|
587 | (4) |
Appendix B Linear algebra |
|
591 | (10) |
|
B.1 Finite-dimensional vector spaces |
|
|
591 | (3) |
|
B.2 Linear mappings and matrices |
|
|
594 | (3) |
|
|
597 | (2) |
|
|
599 | (1) |
|
|
600 | (1) |
Appendix C Exterior algebras and the cross product |
|
601 | (6) |
|
|
601 | (3) |
|
|
604 | (3) |
Appendix D Tychonoff's theorem |
|
607 | (5) |
Index |
|
612 | (6) |
Contents for Volume I |
|
618 | (3) |
Contents for Volume III |
|
621 | |