Atjaunināt sīkdatņu piekrišanu

Course on Partial Differential Equations [Hardback]

  • Formāts: Hardback, 205 pages, height x width: 254x178 mm, weight: 683 g
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 30-May-2019
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470442922
  • ISBN-13: 9781470442927
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 153,55 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 205 pages, height x width: 254x178 mm, weight: 683 g
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 30-May-2019
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470442922
  • ISBN-13: 9781470442927
Citas grāmatas par šo tēmu:
Does entropy really increase no matter what we do? Can light pass through a Big Bang? What is certain about the Heisenberg uncertainty principle? Many laws of physics are formulated in terms of differential equations, and the questions above are about the nature of their solutions. This book puts together the three main aspects of the topic of partial differential equations, namely theory, phenomenology, and applications, from a contemporary point of view. In addition to the three principal examples of the wave equation, the heat equation, and Laplace's equation, the book has chapters on dispersion and the Schrodinger equation, nonlinear hyperbolic conservation laws, and shock waves.

The book covers material for an introductory course that is aimed at beginning graduate or advanced undergraduate level students. Readers should be conversant with multivariate calculus and linear algebra. They are also expected to have taken an introductory level course in analysis. Each chapter includes a comprehensive set of exercises, and most chapters have additional projects, which are intended to give students opportunities for more in-depth and open-ended study of solutions of partial differential equations and their properties.
Preface vii
Chapter 1 Introduction
1(8)
§1.1 Overview of the subject
1(1)
§1.2 Examples
2(6)
Exercises:
Chapter 1
8(1)
Chapter 2 Wave equations
9(34)
§2.1 Transport equations: The Fourier transform
10(2)
§2.2 Transport equations: The method of characteristics
12(3)
§2.3 Conservation laws
15(1)
§2.4 The d'Alembert formula
16(3)
§2.5 Duhamel's principle
19(2)
§2.6 The method of images
21(3)
§2.7 Separation of variables
24(10)
Exercises:
Chapter 2
34(3)
Projects:
Chapter 2
37(6)
Chapter 3 The heat equation
43(28)
§3.1 The heat kernel
44(2)
§3.2 Convolution operators
46(2)
§3.3 The maximum principle
48(1)
§3.4 Initial and initial-boundary value problems
49(7)
§3.5 Conservation laws and the evolution of moments
56(5)
§3.6 The heat equation in Rn
61(1)
§3.7 Entropy
62(3)
§3.8 Gradient flow
65(1)
Exercises:
Chapter 3
66(3)
Projects:
Chapter 3
69(2)
Chapter 4 Laplace's equation
71(32)
§4.1 Dirichlet, Poisson, and Neumann boundary value problems
71(1)
§4.2 Green's identities
72(2)
§4.3 The fundamental solution
74(3)
§4.4 Maximum principle
77(3)
§4.5 Green's functions and Dirichlet-Neumann operators
80(6)
§4.6 Poisson kernel on Rn+
86(4)
§4.7 Maximum principle again
90(1)
§4.8 Oscillation and attenuation estimates
91(2)
§4.9 Hadamard variational formula
93(2)
Exercises:
Chapter 4
95(4)
Projects:
Chapter 4
99(4)
Chapter 5 Properties of the Fourier transform
103(18)
§5.1 Hilbert spaces
104(3)
§5.2 Schwartz class
107(6)
§5.3 Fourier transform of L1-integrable functions
113(6)
Exercises:
Chapter 5
119(2)
Chapter 6 Wave equations on Rn
121(30)
§6.1 Wave propagator by Fourier synthesis
122(1)
§6.2 Lorentz transformations
123(3)
§6.3 Method of spherical means
126(6)
§6.4 Huygens' principle
132(2)
§6.5 Paley--Wiener theory
134(5)
§6.6 Lagrangians and Hamiltonian PDEs
139(5)
Exercises:
Chapter 6
144(3)
Projects:
Chapter 6
147(4)
Chapter 7 Dispersion
151(26)
§7.1 Schrodinger's equation
152(4)
§7.2 Heisenberg uncertainty principle
156(3)
§7.3 Phase and group velocities
159(3)
§7.4 Stationary phase
162(4)
Exercises:
Chapter 7
166(2)
Projects:
Chapter 7
168(9)
Chapter 8 Conservation laws and shocks
177(24)
§8.1 First-order quasilinear equations
177(6)
§8.2 The Riemann problem
183(3)
§8.3 Lax--Olenik solutions
186(9)
Exercises:
Chapter 8
195(1)
Projects:
Chapter 8
196(5)
Bibliography 201(2)
Index 203
Walter Craig, McMaster University, Hamilton, ON, Canada, and Fields Institute, Toronto, ON, Canada.