Atjaunināt sīkdatņu piekrišanu

E-grāmata: Course in Real Algebraic Geometry: Positivity and Sums of Squares

  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Mathematics 303
  • Izdošanas datums: 12-Sep-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031692130
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Mathematics 303
  • Izdošanas datums: 12-Sep-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031692130

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook is designed for a one-year graduate course in real algebraic geometry, with a particular focus on positivity and sums of squares of polynomials.





The first half of the book features a thorough introduction to ordered fields and real closed fields, including the TarskiSeidenberg projection theorem and transfer principle. Classical results such as Artin's solution to Hilbert's 17th problem and Hilbert's theorems on sums of squares of polynomials are presented in detail. Other features include careful introductions to the real spectrum and to the geometry of semialgebraic sets. The second part studies Archimedean positivstellensätze in great detail and in various settings, together with important applications. The techniques and results presented here are fundamental to contemporary approaches to polynomial optimization. Important results on sums of squares on projective varieties are covered as well. The last part highlights applications to semidefinite programming and polynomial optimization, including recent research on semidefinite representation of convex sets.





Written by a leading expert and based on courses taught for several years, the book assumes familiarity with the basics of commutative algebra and algebraic varieties, as can be covered in a one-semester first course. Over 350 exercises, of all levels of difficulty, are included in the book.

1 Ordered Fields.- 2 Positive Polynomials and Sums of Squares.- 3 The Real Spectrum.- 4 Semialgebraic Geometry.- 5 The Archimedean Property.- 6 Positive Polynomials with Zeros.- 7 Sums of Squares on Projective Varieties.- 8 Sums of Squares and Optimization.- Appendix A: Commutative Algebra and Algebraic Geometry.- Appendix B: Convex Sets in Real Infinite-Dimensional Vector Spaces.

Claus Scheiderer is Professor for Geometry at Konstanz University (Germany). Among his main mathematical interests are real algebraic geometry, convex algebraic geometry and linear algebraic groups.