Atjaunināt sīkdatņu piekrišanu

E-grāmata: Crystallization of Lipids: Fundamentals and Applications in Food, Cosmetics, and Pharmaceuticals

Edited by
  • Formāts: PDF+DRM
  • Izdošanas datums: 25-Jan-2018
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781118593912
  • Formāts - PDF+DRM
  • Cena: 221,22 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 25-Jan-2018
  • Izdevniecība: Wiley-Blackwell
  • Valoda: eng
  • ISBN-13: 9781118593912

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

An authoritative reference that contains the most up-to-date information knowledge, approaches, and applications of lipid crystals

Crystallization of Lipids is a comprehensive resource that offers the most current and emerging knowledge, techniques and applications of lipid crystals. With contributions from noted experts in the field, the text covers the basic research of polymorphic structures, molecular interactions, nucleation and crystal growth and crystal network formation of lipid crystals which comprise main functional materials employed in food, cosmetic and pharmaceutical industry. The authors highlight trans-fat alternative and saturated-fat reduction technology to lipid crystallization. These two issues are the most significant challenges in the edible-application technology of lipids, and a key solution is lipid crystallization.

The text focuses on the crystallization processes of lipids under various external influences of thermal fluctuation, ultrasound irradiation, shear, emulsification and additives. Designed to be practical, the book’s information can be applied to realistic applications of lipids to foods, cosmetic and pharmaceuticals. This authoritative and up-to-date guide:

  • Highlights cutting-edge research tools designed to help analyse lipid crystallization with the most current and the conventional techniques
  • Offers a thorough review of the information, techniques and applications of lipid crystals
  • Includes contributions from noted experts in the field of lipid crystals
  • Presents cutting-edge information on the topics of trans-fat alterative and saturated-fat reduction technology

Written for research and development technologists as well as academics, this important resource contains research on lipid crystals which comprise the main functional materials employed in food, cosmetic and pharmaceutical industry.

Preface xiii
List of Contributors
xv
1 Introduction: Relationships of Structures, Properties, and Functionality
1(16)
Kiyotaka Sato
1.1 Introduction
1(1)
1.2 Lipid Species
1(4)
1.2.1 Hydrocarbons
1(1)
1.2.2 Fatty Acids
2(2)
1.2.3 Alcohols and Waxes
4(1)
1.2.4 Acylglycerols
4(1)
1.3 Physical States and the Functionality of Lipid Products
5(2)
1.4 Formation Processes of Lipid Crystals
7(2)
1.5 Polymorphism
9(2)
1.6 Aging and Deterioration
11(2)
1.7 Trans-Fat Alternative and Saturated-Fat Reduction Technology
13(4)
References
15(2)
2 Polymorphism of Lipid Crystals
17(44)
Kiyotaka Sato
2.1 Introduction
17(1)
2.2 Thermal Behavior of Polymorphic Transformations
17(3)
2.3 Molecular Properties
20(7)
2.3.1 Subcell and Chain-Length Structures
20(4)
2.3.2 Conformation of Hydrocarbon Chains
24(1)
2.3.3 Glycerol Conformations
25(1)
2.3.4 Polytypism
26(1)
2.4 Fatty Acids
27(10)
2.4.1 Saturated Fatty Acids
27(5)
2.4.2 Unsaturated Fatty Acids
32(5)
2.5 Monoacylglycerols and Diacylglycerols
37(4)
2.5.1 Crystal/Molecular Structures
37(2)
2.5.2 Polymorphic Behavior
39(2)
2.6 Triacylglycerols (TAGs)
41(13)
2.6.1 Crystal/Molecular Structures
42(4)
2.6.2 Polymorphic Behavior
46(8)
2.7 Conclusions
54(7)
References
54(7)
3 Molecular Interactions and Mixing Phase Behavior of Lipid Crystals
61(44)
Eckhard Floeter
Michaela Haeupler
Kiyotaka Sato
3.1 Introduction
61(2)
3.2 Thermodynamic Considerations
63(7)
3.2.1 Framework for Engineering Calculations
63(3)
3.2.2 Phase Behavior of Co-Crystallizing Components
66(4)
3.2.3 Governing Principles for Phase Boundaries
70(1)
3.3 Effects of Molecular Structures on the Phase Behavior
70(22)
3.3.1 Aliphatic Chain-Chain Interactions: n-Alkanes
71(1)
3.3.2 Mixtures of Fatty Acids
72(9)
3.3.3 Mixtures of Partial Glyceride Fatty-Acid Esters
81(1)
3.3.4 Mixtures of TAGs
82(10)
3.4 Mixing Behavior of TAGs in Natural and Interesterified Fats
92(5)
3.4.1 Cocoa Butter
93(1)
3.4.2 Palm Oil
94(1)
3.4.3 Coconut Oil
95(1)
3.4.4 Milk Fat
95(1)
3.4.5 Interesterified Fats
96(1)
3.5 Crystallization Properties
97(1)
3.6 Conclusions
98(7)
References
100(5)
4 Fundamental Aspects of Crystallization of Lipids
105(38)
Hironori Hondoh
Satoru Ueno
Kiyotaka Sato
4.1 Introduction
105(1)
4.2 Physical and Structural Properties of Lipid Liquids
105(7)
4.2.1 Preheating Effects
106(3)
4.2.2 Liquid Phases of Triacylglycerols
109(3)
4.3 Driving Forces for Crystallization
112(2)
4.4 Nucleation
114(11)
4.4.1 Homogeneous versus Heterogeneous
114(4)
4.4.2 Polymorph-Dependent Nucleation Kinetics
118(3)
4.4.3 Secondary Nucleation
121(1)
4.4.4 Crystal Seeding
122(3)
4.5 Kinetics of Crystal Growth
125(10)
4.5.1 Mechanism of Crystal Growth
125(2)
4.5.2 Crystal Growth Rate
127(2)
4.5.3 Polymorph-Dependent Growth Rate
129(1)
4.5.4 Spherulite
130(2)
4.5.5 Epitaxial Growth
132(1)
4.5.6 Morphology of Crystals
133(2)
4.6 Conclusions
135(8)
Acknowledgment
136(1)
References
136(7)
5 Supramolecular Assembly of Fat Crystal Networks from the Nanoscale to the Mesoscale
143(40)
Fernanda Peyronel
Nuria C. Acevedo
David A. Pink
Alejandro G. Marangoni
5.1 Introduction
143(1)
5.2 Cryo-TEM
144(10)
5.2.1 Challenges Associated with the Microscopic Observation of Fat Microstructure
144(1)
5.2.2 Sample Preparation for Cryo-TEM
145(1)
5.2.3 Nanoscale Structure Characterization
146(2)
5.2.4 Effects of External Fields on Fat Nanostructure
148(6)
5.3 Physical Interactions, Models, and Mathematical Methods
154(10)
5.3.1 Models in General
155(1)
5.3.2 Coarse-Grained Interactions: Nano- to Mesoscale
156(1)
5.3.3 Models Using Spheres
157(1)
5.3.4 Introduction to Modeling the Statics and Dynamics of Aggregates
157(1)
5.3.5 Static Structure Functions
158(1)
5.3.6 Application 1: CNP Aggregation. Tristearin Solids in Triolein Oil
158(3)
5.3.7 Application 2: Complex Oils. Tristearin Solids in Complex Oils
161(1)
5.3.8 Application 3: Nanoscale Phase Separation in Edible Oils
162(2)
5.4 Ultra Small Angle X-Ray Scattering (USAXS)
164(10)
5.4.1 Principles of X-Ray Scattering
164(3)
5.4.2 USAXS Instrumentation at the APS
167(1)
5.4.3 Sample Preparation
168(1)
5.4.4 Unified Fit and Guinier-Porod Models
168(2)
5.4.5 Experimental Results
170(4)
5.5 Concluding Remarks
174(9)
Acknowledgments
175(1)
References
175(8)
6 Effects of Dynamic Temperature Variations on Microstructure and Polymorphic Behavior of Lipid Systems
183(28)
Laura Bayes-Garcia
Teresa Calvet
Miquel A. Cuevas-Diarte
6.1 Introduction
183(1)
6.2 Influence on the Polymorphic Behavior in Bulk State
183(10)
6.2.1 Single TAG Components
183(6)
6.2.2 Binary Mixtures of TAGs
189(4)
6.3 Colloidal Dispersion States
193(5)
6.3.1 Emulsions
193(3)
6.3.2 Organogels
196(2)
6.4 Role of Thermal Treatments on End Food Products Properties
198(8)
6.4.1 Milk Fats
198(1)
6.4.2 Other Dairy Products
199(1)
6.4.3 Cocoa Butter
200(4)
6.4.4 Vegetable Fats
204(2)
6.5 Conclusions
206(5)
References
207(4)
7 Lipid Crystal Networks Structured under Shear Flow
211(30)
Farnaz Maleky
Gianfranco Mazzanti
7.1 Introduction
211(1)
7.2 Overview of the Formation of Fat Crystals
212(1)
7.3 Temperature Gradients and Optimal Supercooling
213(1)
7.4 Basic Concepts on Shear Flow
214(2)
7.5 Fat Crystallization under Shear
216(1)
75.1 Shear Affects Polymorphic Transformations
216(17)
7.5.2 Crystalline Orientation Induced by Shear Flow
219(5)
7.5.3 Shear Affects Fat Structural Properties at the Micro- and Nano-Length Scales
224(3)
7.5.4 Physicochemical Properties of Sheared Fat Matrices
227(4)
7.5.5 Effects of Shear Flow on Mass Transfer Dynamics of Crystallizing and Crystallized Materials
231(2)
7.6 Concluding Remarks
233(8)
References
234(7)
8 Tailoring Lipid Crystal Networks with High-Intensity Ultrasound
241(22)
Yubin Ye
Peter R. Birkin
Silvana Martini
8.1 Introduction
241(1)
8.2 Fundamentals of Sonication
242(4)
8.2.1 Acoustic Driving Force
242(1)
8.2.2 Acoustic Cell Characteristics
243(1)
8.2.3 Cavitation
244(1)
8.2.4 Experimental Conditions
245(1)
8.3 Tailoring Lipid Crystal Networks
246(9)
8.3.1 Crystallization Kinetics
246(3)
8.3.2 Inferential Mechanism
249(1)
8.3.3 Postsonication Changes
250(5)
8.4 Practical Considerations
255(3)
8.4.1 Oxidation
255(2)
8.4.2 Scale Up
257(1)
8.4.3 Combination with Other Processing Methods
258(1)
8.5 Conclusions and Future Research
258(5)
References
259(4)
9 Effects of Foreign and Indigenous Minor Components
263(20)
Kevin W. Smith
Kiyotaka Sato
9.1 Introduction
263(1)
9.2 Basic Understanding
264(1)
9.3 Effects of Foreign Components
265(11)
9.3.1 Emulsifiers
265(11)
9.3.2 Indigenous Minor Components
276(1)
9.4 Other Additives
276(2)
9.5 Conclusions
278(5)
References
279(4)
10 Crystallization Properties of Milk Fats
283(40)
Christelle Lopez
10.1 Introduction
283(1)
10.2 Milk Fat: A Wide Diversity of Fatty Acids and Triacylglycerols (TAGs)
284(1)
10.3 Crystallization Properties of Bovine Anhydrous Milk Fat (AMF)
285(11)
10.3.1 Thermal Properties
285(1)
10.3.2 Effect of Cooling Rate on AMF Crystals
286(9)
10.3.3 Effect of Shear on AMF Crystals
295(1)
10.3.4 Effect of Minor Lipid Compounds
295(1)
10.4 Crystallization of TAGs in Bovine Milk Fat Globules and Emulsion Droplets
296(10)
10.4.1 Effect of Cooling Rate and Tempering
298(6)
10.4.2 Effect of the Size of Milk Fat Globules and Lipid Droplets
304(2)
10.5 Crystallization Properties of Milk Fat in Dairy Products
306(2)
10.6 TAG Compositions Affecting Crystallization Properties of Milk Fat
308(8)
10.6.1 Technological Process: Dry Fractionation
308(4)
10.6.2 Dietary Manipulations
312(3)
10.6.3 Milk Fat from Various Mammal Species
315(1)
10.7 Liquid TAG Phase
316(1)
10.8 Conclusions
317(6)
References
318(5)
11 Crystallization Behavior of Sunflower Oil-Based Fats for Edible Applications
323(30)
Maria L. Herrera
Silvana Martini
11.1 Introduction
323(1)
11.2 High Stearic High Oleic Sunflower Oil
324(13)
11.2.1 Fractionation of HSHO-SFO
324(2)
11.2.2 Crystallization Behavior
326(3)
11.2.3 Polymorphic Behavior
329(8)
11.3 Blends of Sunflower Oil and Milk Fat
337(10)
11.3.1 Chemical Composition
340(1)
11.3.2 Physical Properties
340(4)
11.3.3 Addition of Palmitic Sucrose Ester
344(3)
11.4 HSHO-Based CBE
347(1)
11.5 Conclusions
348(5)
References
348(5)
12 Physical Properties of Organogels Developed with Selected Low-Molecular-Weight Gelators
353(32)
Jorge F. Toro-Vazquez
Flor Alvarez-Mitre
Miriam Charo-Alonso
12.1 Introduction
353(2)
12.2 Basic Aspects of LMOGs: From Molecular Architecture to Functional Assemblies
355(2)
12.3 Why Developing Organogels with Vegetable Oils? .356
12.3.1 Vegetable Oils as Solvent in the Development of Organogels with LMOGs
357(10)
12.3.2 Relationship between Molecular Structure of LMOGs and Physical Properties of Organogels
367(6)
12.4 Organogels of Candelilla Wax
373(4)
12.4.1 Rheological Properties of Candelilla Wax Organogels Developed Applying Shear Rate
373(4)
12.4.2 Applications of Candelilla Wax Organogels
377(1)
12.5 Conclusions
377(8)
References
379(6)
13 Formation and Properties of Biopolymer-Based Oleogels
385(20)
Ashok R. Patel
13.1 Introduction
385(1)
13.2 Formation of Polymer-Based Oleogels
386(7)
13.2.1 Polymer Oleogelation through Direct Methods
387(2)
13.2.2 Polymer Oleogelation through Indirect Methods
389(4)
13.3 Properties of Polymer-Based Oleogels
393(4)
13.3.1 Mechanical Properties
393(1)
13.3.2 Temperature Sensitivity
394(3)
13.3.3 Stability in Presence of Water
397(1)
13.4 Potential Applications of Polymer-Based Oleogels
397(1)
13.4.1 Replacement of Beef Fat in Frankfurters
397(1)
13.4.2 Heat-Resistant Chocolates
397(1)
13.4.3 Polymer Oleogels as Alternative to Full-Fat Shortenings
397(1)
13.4.4 Bakery Applications of Ethyl Cellulose Oleogels
398(1)
13.5 Conclusions: Opportunities and Challenges
398(7)
Acknowledgments
401(1)
References
402(3)
14 Lipid Crystallization in Water-in-Oil Emulsions
405(26)
Nicole L. Green
Derick Rousseau
14.1 Introduction
405(1)
14.2 Basics of Emulsion Properties
406(2)
14.3 Emulsifier Effects on W/O Emulsions
408(7)
14.3.1 Mono- and Diacylglycerols (E471)
409(2)
14.3.2 Sucrose Fatty-Acid Esters (E473)
411(1)
14.3.3 Lecithins (E322)
412(1)
14.3.4 Sorbitan Esters and Polyesters (E491-E496)
413(2)
14.3.5 Polyglycerol Esters (E475 - E476)
415(1)
14.4 Stabilization Modes of W/O Emulsions
415(8)
14.4.1 Pickering Stabilization
416(4)
14.4.2 Network Stabilization
420(1)
14.4.3 Combined Pickering and Network Stabilization
421(2)
14.5 Conclusions
423(8)
References
424(7)
15 Crystallization of Lipids in Oil-in-Water Emulsion States
431(16)
John N. Coupland
15.1 The Basic Concepts
431(1)
15.2 Surface Nucleation
432(4)
15.3 Polymorphic Transitions in Droplets
436(1)
15.4 Morphology of Crystalline Droplets
437(2)
15.5 Colloidal Stability of Crystalline Droplets
439(3)
15.6 Conclusions
442(5)
References
443(4)
16 Lipid Crystals and Microstructures in Animal Meat Tissues
447(18)
Michiyo Motoyama
Genya Watanabe
Keisuke Sasaki
16.1 Introduction
447(1)
16.2 Depot Fat and Crystalline State
448(2)
16.2.1 Adipose Tissue
448(1)
16.2.2 Triacylglycerol (TAG) Compositions of Animal Fats
449(1)
16.3 Fat Crystals and Quality of Porcine Adipose Tissue
450(10)
16.3.1 Polymorphism of Extracted Porcine Fat Crystals
450(4)
16.3.2 Fat Crystals and Macroscopic Meat Quality
454(1)
16.3.3 Application to Actual Meat and Meat Products
455(5)
16.4 Crystal Microstructures in Adipose Tissues
460(2)
16.5 Concluding Remarks
462(3)
Acknowledgments
462(1)
References
462(3)
17 Conventional and New Techniques to Monitor Lipid Crystallization
465(28)
Annelien Rigolle
Koen Van Den Abeele
Imogen Foubert
17.1 Introduction: What Would Be a Perfect Technique?
465(1)
17.2 Conventional Techniques (and Advances Made)
466(12)
17.2.1 Pulsed Nuclear Magnetic Resonance
466(3)
17.2.2 Differential Scanning Calorimetry
469(3)
17.2.3 X-Ray Diffraction
472(2)
17.2.4 Rheology
474(2)
17.2.5 Microscopy
476(2)
17.3 "New" Techniques with Potential for Online Monitoring
478(7)
17.3.1 Ultrasonic Techniques
478(6)
17.3.2 Laser Backscattering
484(1)
17.3.3 Near-Infrared and Raman Spectroscopy
485(1)
17.4 Conclusions
485(8)
Acknowledgments
486(1)
References
487(6)
Index 493
About the Editor KIYOTAKA SATO is Professor Emeritus, Hiroshima University, Japan.