Atjaunināt sīkdatņu piekrišanu

E-grāmata: CUDA Fortran for Scientists and Engineers: Best Practices for Efficient CUDA Fortran Programming

(Senior Applied Engineer, NVIDIA), (Director, HPC Benchmarking Group, NVIDIA)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 11-Jul-2024
  • Izdevniecība: Morgan Kaufmann Publishers In
  • Valoda: eng
  • ISBN-13: 9780443219764
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 131,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 11-Jul-2024
  • Izdevniecība: Morgan Kaufmann Publishers In
  • Valoda: eng
  • ISBN-13: 9780443219764
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

CUDA Fortran for Scientists and Engineers: Best Practices for Efficient CUDA Fortran Programming shows how high-performance application developers can leverage the power of GPUs using Fortran, the familiar language of scientific computing and supercomputer performance benchmarking. The authors presume no prior parallel computing experience, and cover the basics along with best practices for efficient GPU computing using CUDA Fortran. In order to add CUDA Fortran to existing Fortran codes, they explain how to understand the target GPU architecture, identify computationally-intensive parts of the code, and modify the code to manage the data and parallelism and optimize performance all in Fortran, without having to rewrite in another language.

Each concept is illustrated with actual examples so you can immediately evaluate the performance of your code in comparison.

This second edition provides much needed updates on how to efficiently program GPUs in CUDA Fortran. It can be used either as a tutorial on GPU programming in CUDA Fortran as well as a reference text.

PART I: CUDA Fortran Programming
1. Introduction
2. Correctness, Accuracy, and Debugging
3. Performance Measurements and Metrics
4. Synchronization
5. Optimization
6. Multi-GPU Programming
7. Porting Tips and Techniques
8. Interfacing with CUDA C, OpenACC, and CUDA Libraries PART II Case Studies
9. Monte Carlo Method
10. Finite Difference Method
11. Applications of the Fast Fourier TransformRay Tracing

Greg Ruetsch is a Senior Applied Engineer at NVIDIA, where he works on CUDA Fortran and performance optimization of HPC codes. He holds a Bachelors degree in mechanical and aerospace engineering from Rutgers University and a Ph.D. in applied mathematics from Brown University. Prior to joining NVIDIA, he has held research positions at Stanford Universitys Center for Turbulence Research and Sun Microsystems Laboratories. Massimiliano Fatica is the Director of the HPC Benchmarking Group at NVIDIA where he works in the area of GPU computing (high-performance computing and clusters). He holds a laurea in Aeronautical Engineering and a PhD in Theoretical and Applied Mechanics from the University of Rome La Sapienza”. Prior to joining NVIDIA, he was a research staff member at Stanford University where he worked at the Center for Turbulence Research and Center for Integrated Turbulent Simulations on applications for the Stanford Streaming Supercomputer.