Atjaunināt sīkdatņu piekrišanu

E-grāmata: Curve Shortening Problem

  • Formāts: 272 pages
  • Izdošanas datums: 06-Mar-2001
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781420035704
  • Formāts - PDF+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 272 pages
  • Izdošanas datums: 06-Mar-2001
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781420035704

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results.

The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson's convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem.

Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.
Preface vii
Basic Results
1(26)
Short time existence
1(14)
Facts from the parabolic theory
15(4)
The evolution of geometric quantities
19(8)
Invariant Solutions for the Curve Shortening Flow
27(18)
Travelling waves
27(2)
Spirals
29(4)
The support function of a convex curve
33(2)
Self-similar solutions
35(10)
The Curvature-Eikonal Flow for Convex Curves
45(48)
Blaschke Selection Theorem
45(2)
Preserving convexity and shrinking to a point
47(4)
Gage-Hamilton Theorem
51(8)
The contracting case of the ACEF
59(14)
The stationary case of the ACEF
73(7)
The expanding case of the ACEF
80(13)
The Convex Generalized Curve Shortening Flow
93(28)
Results from the Brunn-Minkowski Theory
94(3)
The AGCSF for σ in (1/3, 1)
97(5)
The affine curve shortening flow
102(10)
Uniqueness of self-similar solutions
112(9)
The Non-convex Curve Shortening Flow
121(22)
An isoperimetric ratio
121(8)
Limits of the rescaled flow
129(5)
Classification of singularities
134(9)
A Class of Non-convex Anisotropic Flows
143(36)
The decrease in total absolute curvature
144(3)
The existence of a limit curve
147(6)
Shrinking to a point
153(7)
A whisker lemma
160(4)
The convexity theorem
164(15)
Embedded Closed Geodesics on Surfaces
179(24)
Basic results
180(6)
The limit curve
186(2)
Shrinking to a point
188(8)
Convergence to a geodesic
196(7)
The Non-convex Generalized Curve Shortening Flow
203(44)
Short time existence
204(7)
The number of convex arcs
211(7)
The limit curve
218(10)
Removal of interior singularities
228(11)
The almost convexity theorem
239(8)
Bibliography 247(7)
Index 254


Chou, Kai-Seng; Zhu, Xi-Ping