Atjaunināt sīkdatņu piekrišanu

Cyclotomic Fields I and II 2nd ed. 1990. Softcover reprint of the original 2nd ed. 1990 [Mīkstie vāki]

Assisted by ,
  • Formāts: Paperback / softback, 436 pages, height x width: 235x155 mm, weight: 700 g, XVII, 436 p., 1 Paperback / softback
  • Sērija : Graduate Texts in Mathematics 121
  • Izdošanas datums: 30-Sep-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461269725
  • ISBN-13: 9781461269724
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 68,29 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 80,35 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 436 pages, height x width: 235x155 mm, weight: 700 g, XVII, 436 p., 1 Paperback / softback
  • Sērija : Graduate Texts in Mathematics 121
  • Izdošanas datums: 30-Sep-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461269725
  • ISBN-13: 9781461269724
Citas grāmatas par šo tēmu:
Combining the works previously published as Cyclotomic Fields, V. I & II, this book introduces these number fields, which are of great interest in classical number theory and other areas such as K-theory. Covers p-adic L-functions, Iwasawa theory, and more.

Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [ Po], Artin-Hasse [ A-H] and Vandiver [ Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [ Iw 11] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.

Papildus informācija

Springer Book Archives
1 Character Sums.-
1. Character Sums over Finite Fields.-
2.
Stickelbergers Theorem.-
3. Relations in the Ideal Classes.-
4. Jacobi Sums
as Hecke Characters.-
5. Gauss Sums over Extension Fields.-
6. Application to
the Fermat Curve.- 2 Stickelberger Ideals and Bernoulli Distributions.-
1.
The Index of the First Stickelberger Ideal.-
2. Bernoulli Numbers.-
3.
Integral Stickelberger Ideals.-
4. General Comments on Indices.-
5. The Index
for k Even.-
6. The Index for k Odd.-
7. Twistings and Stickelberger Ideals.-
8. Stickelberger Elements as Distributions.-
9. Universal Distributions.-
10.
The Davenport-Hasse Distribution.- Appendix. Distributions.- 3 Complex
Analytic Class Number Formulas.-
1. Gauss Sums on Z/mZ.-
2. Primitive
L-series.-
3. Decomposition of L-series.-
4. The (± 1)-eigenspaces.-
5.
Cyclotomic Units.-
6. The Dedekind Determinant.-
7. Bounds for Class
Numbers.- 4 The p-adic L-function.-
1. Measures and Power Series.-
2.
Operations on Measures and Power Series.-
3. The Mellin Transform and p-adic
L-function.- Appendix. The p-adic Logarithm.-
4. The p-adic Regulator.-
5.
The Formal Leopoldt Transform.-
6. The p-adic Leopoldt Transform.- 5 Iwasawa
Theory and Ideal Class Groups.-
1. The Iwasawa Algebra.-
2. Weierstrass
Preparation Theorem.-
3. Modules over ZP[ [ X]].-
4. Zp-extensions and Ideal
Class Groups.-
5. The Maximal p-abelian p-ramified Extension.-
6. The Galois
Group as Module over the Iwasawa Algebra.- 6 Kummer Theory over Cyclotomic
Zp-extensions.-
1. The Cyclotomic Zp-extension.-
2. The Maximal p-abelian
p-ramified Extension of the Cyclotomic Zp-extension.-
3. Cyclotomic Units as
a Universal Distribution.-
4. The Iwasawa-Leopoldt Theorem and the
Kummer-Vandiver Conjecture.- 7 Iwasawa Theory of Local Units.-
1. The
Kummer-Takagi Exponents.- 2.Projective Limit of the Unit Groups.-
3. A Basis
for U(x) over A.-
4. The Coates-Wiles Homomorphism.-
5. The Closure of the
Cyclotomic Units.- 8 Lubin-Tate Theory.-
1. Lubin-Tate Groups.-
2. Formal
p-adic Multiplication.-
3. Changing the Prime.-
4. The Reciprocity Law.-
5.
The Kummer Pairing.-
6. The Logarithm.-
7. Application of the Logarithm to
the Local Symbol.- 9 Explicit Reciprocity Laws.-
1. Statement of the
Reciprocity Laws.-
2. The Logarithmic Derivative.-
3. A Local Pairing with
the Logarithmic Derivative.-
4. The Main Lemma for Highly Divisible x and ? =
xn.-
5. The Main Theorem for the Symbol ?x, xn?n.-
6. The Main Theorem for
Divisible x and ? = unit.-
7. End of the Proof of the Main Theorems.- 10
Measures and Iwasawa Power Series.-
1. Iwasawa Invariants for Measures.-
2.
Application to the Bernoulli Distributions.-
3. Class Numbers as Products of
Bernoulli Numbers.- Appendix by L. Washington: Probabilities.-
4.
Divisibility by l Prime to p: Washingtons Theorem.- 11 The
Ferrero-Washington Theorems.-
1. Basic Lemma and Applications.-
2.
Equidistribution and Normal Families.-
3. An Approximation Lemma.-
4. Proof
of the Basic Lemma.- 12 Measures in the Composite Case.-
1. Measures and
Power Series in the Composite Case.-
2. The Associated Analytic Function on
the Formal Multiplicative Group.-
3. Computation of Lp(1, x) in the Composite
Case.- 13 Divisibility of Ideal Class Numbers.-
1. Iwasawa Invariants in
Zp-extensions.-
2. CM Fields, Real Subfields, and Rank Inequalities.-
3. The
l-primary Part in an Extension of Degree Prime to l.-
4. A Relation between
Certain Invariants in a Cyclic Extension.-
5. Examples of Iwasawa.-
6. A
Lemma of Kummer.- 14 P-adic Preliminaries.-
1. The p-adic Gamma Function.-
2.
The Artin-Hasse Power Series.-
3. AnalyticRepresentation of Roots of Unity.-
Appendix: Barskys Existence Proof for the p-adic Gamma Function.- 15 The
Gamma Function and Gauss Sums.-
1. The Basic Spaces.-
2. The Frobenius
Endomorphism.-
3. The Dwork Trace Formula and Gauss Sums.-
4. Eigenvalues of
the Frobenius Endomorphism and the p-adic Gamma Function.-
5. p-adic Banach
Spaces.- 16 Gauss Sums and the Artin-Schreier Curve.-
1. Power Series with
Growth Conditions.-
2. The Artin-Schreier Equation.-
3. Washnitzer-Monsky
Cohomology.-
4. The Frobenius Endomorphism.- 17 Gauss Sums as Distributions.-
1. The Universal Distribution.-
2. The Gauss Sums as Universal
Distributions.-
3. The L-function at s = 0.-
4. The p-adic Partial Zeta
Function.- Appendix by Karl Rubin.- The Main Conjecture.-
1. Setting and
Notation.-
2. Properties of Kolyvagins Euler System.-
3. An Application of
the Chebotarev Theorem.-
5. The Main Conjecture.-
6. Tools from Iwasawa
Theory.-
7. Proof of Theorem 5.1.-
8. Other Formulations and Consequences of
the Main Conjecture.