Atjaunināt sīkdatņu piekrišanu

E-grāmata: Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry

  • Formāts: PDF+DRM
  • Sērija : Mathematical Physics Studies 26
  • Izdošanas datums: 09-Jul-2006
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9781402030888
  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Mathematical Physics Studies 26
  • Izdošanas datums: 09-Jul-2006
  • Izdevniecība: Springer
  • Valoda: eng
  • ISBN-13: 9781402030888

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

GU Chaohao The soliton theory is an important branch of nonlinear science. On one hand, it describes various kinds of stable motions appearing in - ture, such as solitary water wave, solitary signals in optical ?bre etc., and has many applications in science and technology (like optical signal communication). On the other hand, it gives many e ective methods ofgetting explicit solutions of nonlinear partial di erential equations. Therefore, it has attracted much attention from physicists as well as mathematicians. Nonlinearpartialdi erentialequationsappearinmanyscienti cpr- lems. Getting explicit solutions is usually a di cult task. Only in c- tain special cases can the solutions be written down explicitly. However, for many soliton equations, people have found quite a few methods to get explicit solutions. The most famous ones are the inverse scattering method,B.. acklund transformation etc. The inverse scattering method is based on the spectral theory of ordinary di erential equations. The Cauchyproblemofmanysolitonequationscanbetransformedtosolving a system of linear integral equations. Explicit solutions can be derived when the kernel of the integral equation is degenerate. The B.. ac .. klund transformation gives a new solution from a known solution by solving a system of completely integrable partial di erential equations. Some complicated "nonlinear superposition formula" arise to substitute the superposition principlein linear science.

Recenzijas

From the reviews:









"The book is concerned with mutual relations between the differential geometry of surfaces and the theory of integrable nonlinear systems of partial differential equations. It concentrates on the Darboux matrix method for constructing explicit solutions to various integrable nonlinear PDEs. This book can be recommended for students and researchers who are interested in a differential-geometric approach to integrable nonlinear PDEs." (Jun-ichi Inoguchi, Mathematical Reviews, Issue 2006 i)

1+1 Dimensional Integrable Systems.- 2+1 Dimensional Integrable
Systems.- N + 1 Dimensional Integrable Systems.- Surfaces of Constant
Curvature, Bäcklund Congruences and Darboux Transformation.- Darboux
Transformation and Harmonic Map.- Generalized Self-Dual Yang-Mills Equations
and Yang-Mills-Higgs Equations.- Two Dimensional Toda Equations and Laplace
Sequences of Surfaces in Projective Space.