Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data Analysis: A Gentle Introduction for Future Data Scientists

(Lecturer, Department of Mathematical Sciences, University of Essex, UK), (Formerly Professor of Applied Statistics, University of Essex, UK)
  • Formāts: 160 pages
  • Izdošanas datums: 13-Aug-2023
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780192885791
  • Formāts - PDF+DRM
  • Cena: 24,79 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 160 pages
  • Izdošanas datums: 13-Aug-2023
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780192885791

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Data analysis has been a hot topic for a number of years, and many future data scientists have backgrounds that are relatively light in mathematics. This slim volume provides a very approachable guide to the techniques of the subject, designed with such people in mind. Formulae are kept to a minimum, but the book's scope is broad, introducing the basic ideas of probability and statistics and more advanced techniques such as generalised linear models, classification using logistic regression, and support-vector machines.

An essential feature of the book is that it does not tie to any particular software. The methods introduced in this book could also be implemented using any other statistical software and applying any major statistical package. Academically, the book amounts to a first course, practical for those at the undergraduate level, either as part of a mathematics/statistics degree or as a data-oriented option for a non-mathematics degree.

The book appeals to would-be data scientists who may be formula shy. However, it could also be a relevant purchase for statisticians and mathematicians, for whom data science is a new departure, overall appealing to any computer-literate reader with data to analyse.

Recenzijas

Data analysis by Graham Upton and Dan Brawn is a concise and to-the-point guide to data analysis. Compared to other statistics and data analysis books, this one is well written without delving into extensive details on each topic, making it accessible to college-level students who want to grasp the basics in a short time. For newcomers to data analysis and its foundational concepts, this book serves as an excellent starting point. The authors present the material in a straightforward and clear manner, allowing readers to comprehend the essentials in a single sitting. The book focuses solely on the main points necessary for a deeper exploration of data analysis, making it suitable for beginners rather than those seeking to deepen an existing understanding. * J. Arul, Computing Reviews *


1. First steps
2. Summarising data
3. Probablity
4. Probability distributions
5. Estimation and confidence
6. Models, p-values, and hypotheses
7. Comparing proportions
8. Relations between two continous variable
9. Several explanatory variables
10. Classification
11. Last Words
Dr Upton studied at Leicester and Birmingham Universities before taking up a position at the University of Newcastle-upon Tyne. From 1973 until 2014 he taught at the University of Essex, where his responsibilities included time as a dean and as a head of department. His varied data analysis included making sense of British voting figures, identifying gene patterns using microarrays, and estimating rainfall using many different measuring instruments.



Dr Brawn is the holder of two PhDs: in Seismology from the University of Witwatersrand (1989); in Applied Statistics from the University of Essex (2009), both fields involving considerable data analysis. His extensive teaching experience covers many branches of the mathematical sciences and has most recently focused on introducing data analysis to students with limited mathematical background.