Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data Analytics Applications in Education

Edited by (KU Leuven, Belgium), Edited by
  • Formāts: 275 pages
  • Sērija : Data Analytics Applications
  • Izdošanas datums: 29-Sep-2017
  • Izdevniecība: Auerbach Publishers Inc.
  • Valoda: eng
  • ISBN-13: 9781351650182
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 57,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 275 pages
  • Sērija : Data Analytics Applications
  • Izdošanas datums: 29-Sep-2017
  • Izdevniecība: Auerbach Publishers Inc.
  • Valoda: eng
  • ISBN-13: 9781351650182
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The abundance of data and the rise of new quantitative and statistical techniques have created a promising area: data analytics. This combination of a culture of data-driven decision making and techniques to include domain knowledge allows organizations to exploit big data analytics in their evaluation and decision processes. Also, in education and learning, big data analytics is being used to enhance the learning process, to evaluate efficiency, to improve feedback, and to enrich the learning experience.

As every step a student takes in the online world can be traced, analyzed, and used, there are plenty of opportunities to improve the learning process of students. First, data analytics techniques can be used to enhance the student s learning process by providing real-time feedback, or by enriching the learning experience. Second, data analytics can be used to support the instructor or teacher. Using data analytics, the instructor can better trace, and take targeted actions to improve, the learning process of the student. Third, there are possibilities in using data analytics to measure the performance of instructors. Finally, for policy makers, it is often unclear how schools use their available resources to "produce" outcomes. By combining structured and unstructured data from various sources, data analytics might provide a solution for governments that aim to monitor the performance of schools more closely.

Data analytics in education should not be the domain of a single discipline. Economists should discuss the possibilities, issues, and normative questions with a multidisciplinary team of pedagogists, philosophers, computer scientists, and sociologists. By bringing together various disciplines, a more comprehensive answer can be formulated to the challenges ahead. This book starts this discussion by highlighting some economic perspectives on the use of data analytics in education. The book begins a rich, multidisciplinary discussion that may make data analytics in education seem as natural as a teacher in front of a classroom.
Editors vii
Contributors ix
1 Introduction: Big Data Analytics in a Learning Environment
1(10)
Kristof De Witte
Jan Vanthienen
PART I DATA ANALYTICS TO IMPROVE THE LEARNING PROCESS
2 Improved Student Feedback with Process and Data Analytics
11(26)
Johannes De Smedt
Seppe K.L.M. Vanden Broucke
Jan Vanthienen
Kristof De Witte
3 Toward Data for Development: A Model on Learning Communities as a Platform for Growing Data Use
37(46)
Wouter Schelfhout
4 The Impact of Fraudulent Behavior on the Usefulness of Learning Analytics Applications: The Case of Question and Answer Sharing with Medium-Stakes Online Quizzing in Higher Education
83(22)
Silvester Draaijer
Chris Van Klaveren
PART II DATA ANALYTICS TO MEASURE PERFORMANCE
5 Disentangling Faculty Efficiency from Students' Effort
105(22)
Cristian Barra
Sergio Destefanis
Vania Sena
Roberto Zotti
6 Using Data Analytics to Benchmark Schools: The Case of Portugal
127(34)
Maria C. Andrade
E. Silva
Ana S. Camanho
7 The Use of Educational Data Mining Procedures to Assess Students' Performance in a Bayesian Framework
161(20)
Kristof De Witte
Grazia Graziosi
Joris Hindryckx
8 Using Statistical Analytics to Study School Performance through Administrative Datasets
181(30)
Tommaso Agasisti
Francesca Ieva
Chiara Masci
Anna Maria Paganoni
Mara Soncin
PART III POLICY RELEVANCE AND THE CHALLENGES AHEAD
9 The Governance of Big Data in Higher Education
211(22)
Kurt De Wit
Bruno Broucker
10 Evidence-Based Education and Its Implications for Research and Data Analytics with an Application to the Overeducation Literature
233(26)
Wim Groot
Henriette Maassen Van Den Brink
Index 259
Kristof De Witte is a tenured associate professor at the Faculty of Economics and Business at KU Leuven, Belgium, and he holds the chair in "Effectiveness and Efficiency of Educational Innovations" at Top Institute for Evidence-Based Education Research at Maastricht University, the Netherlands. Kristof De Witte is further an affiliated member of the CESifo Network (Ludwig-Maximilians University and Ifo Institute). At KU Leuven, Kristof De Witte is director of the research center "Leuven Economics of Education Research." His research interests include education economics, performance evaluation, and early school leaving. He has published his work in many international academic journals, including The Economic Journal, Journal of Urban Economics, European Journal of Operational Research, Economics of Education Research, European Journal of Political Economy, and Scientometrics.

Jan Vanthienen is full professor of information systems at KU Leuven, Belgium, Department of Decision Sciences and Information Management, Information Systems Group, where he is teaching and researching on business intelligence, analytics, business rules, processes and decisions, business information systems, and information management. He has published more than 200 full papers in reviewed top international journals (such as MIS Quarterly, Machine Learning, Management Science, Journal of Machine Learning Research, IEEE Transactions on Neural Networks, Expert Systems with Applications, IEEE Transactions on Knowledge and Data Engineering, Information Systems, and Health Information Management Journal) and conference proceedings. He is a founding member and currently coordinator of the Leuven Institute for Research in Information Systems (LIRIS) and co-chairholder of the bpost bank research chair on Actionable Analytics, and the Colruyt-Symeta Research Chair on Smart Marketing Analytics. He received an IBM Faculty Award in 2011 on smart decisions and the Belgian Francqui Chair 2009 at FUNDP on smart systems. He is co-founder and president-elect of the Benelux Association for Information Systems (BENAIS).