Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data Analytics for Management, Banking and Finance: Theories and Application

Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Sep-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031365706
  • Formāts - PDF+DRM
  • Cena: 177,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Sep-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031365706

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is a practical guide on the use of various data analytics and visualization techniques and tools in the banking and financial sectors. It focuses on how combining expertise from interdisciplinary areas, such as machine learning and business analytics, can bring forward a shared vision on the benefits of data science from the research point of view to the evaluation of policies. It highlights how data science is reshaping the business sector. It includes examples of novel big data sources and some successful applications on the use of advanced machine learning, natural language processing, networks analysis, and time series analysis and forecasting, among others, in the banking and finance.

It includes several case studies where innovative data science models is used to analyse, test or model some crucial phenomena in banking and finance. At the same time, the book is making an appeal for a further adoption of these novel applications in the field of economics and finance so that they can reach their full potential and support policy-makers and the related stakeholders in the transformational recovery of our societies.

The book is for stakeholders involved in research and innovation in the banking and financial sectors, but also those in the fields of computing, IT and managerial information systems, helping through this new theory to better specify the new opportunities and challenges. The many real cases addressed in this book also provide a detailed guide allowing the reader to realize the latest methodological discoveries and the use of the different Machine Learning approaches (supervised, unsupervised, reinforcement, deep, etc.) and to learn how to use and evaluate performance of new data science tools and frameworks
1. A Survey of Machine Learning Methodologies for Loan Evaluation in
Peer-to-peer (P2P) Lending.- 2. Explainable Machine Learning Models for
Credit Risk Analysis: A Survey.- 3. Data Analytics Incorporated with Machine
Learning Approaches in Finance.- 4. Estimation and Inference in Financial
Volatility Networks.- 5. Multiresolution Data Analytics for Financial Time
Series Using MATLAB.- 6.A Risk-Based Trading System using Algorithmic Trading
and Deep Learning Models.- 7. Financial Contagion During COVID-19: Intraday
Analysis with VAR-VECM Models.- 8. Nonlinear ARDL Analysis of Real Effective
Exchange Rate's Asymmetric Impact on FDI Inflows in Tunisia.- 9. Evaluating
Turkish Banks' Complaint Management Performance using Multi-Criteria Decision
Analysis.- 10. Financial Cycle, Stress, and Policy Roles in Small Open
Economy: Spillover Index Approach.- 11. Performance of Cryptocurrencies under
a Sentiment Analysis Approach in the Time of COVID-19.- 12. Determinants of
Non-Performing Loans: Evidence from Indian Banks.- 13. Natural Resources,
Conflicts, Terrorism, and Finance: Insights from a Descriptive Data
Analysis.- 14. Determinants of Profitability in Islamic Banks: The Kingdom of
Saudi Arabia Market.- 15. Trading Rules and Value at Risk: Is there a linkage?
Foued Saādaoui works at the Department of Statistics of the Faculty of Sciences at King Abdulaziz University (KAU, Jeddah, KSA), and at HEC institute of University of Sousse. Previously he was also assistant and associate professor at the College of Sciences and Theoretical Studies of the Saudi Electronic University (SEU, Riyadh, KSA). Foued does research in Statistics, Probability, AI, Computational and Applied Mathematics, with applications in Finance, Medicine and Transportation.

Yichuan Zhao is a Full Professor of Statistics, Georgia State University, Atlanta. He has a joint appointment as Associate Member of the Neuroscience Institute and he is also an affiliated faculty member of School of Public Health at Georgia State University. His current research interest focuses on survival analysis, empirical likelihood method, nonparametric statistics, statistical analysis of ROC curves, high-dimensional data analysis, bioinformatics, Monte Carlo methods, and statistical modeling of fuzzy systems. He has published 100 research articles in Statistics and Biostatistics research fields.



Hana Rabbouch is Assistant Professor at Higher Institute of Management of Tunis (Tunis University). Her focus is on Image processing with applications in management, transportation and medicine constitute my principal areas of research.