Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data-Centric Business and Applications: Advancements in Information and Knowledge Management, Volume 3

Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 190,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Embark on a journey into the future of business with a groundbreaking book that explores the dynamic interplay between data and business, unlocking its transformative power in strategy, decision-making, and application development. Dive deep into cutting-edge topics such as data governance, analytics, knowledge discovery, and AI, and gain an in-depth understanding of managing, analyzing, and extracting insights from complex data sets. This book's holistic approach sets this book apart, seamlessly integrating the latest information and knowledge management concepts. From integrating data-centric approaches into business models to addressing considerations in data-driven decisions, the diverse topics covered will provide invaluable insights into the central role of data in shaping the future of business and applications. This book sheds light on the ongoing advances in structural management, demonstrating how previously understood knowledge, technologies, and data can pave the way for sustainable solutions in the face of innovation, meet insight, and allow businesses to thrive in the digital age.

Cloud Market  Possibilities, Potentials and Challenges of Cloud
Computing from a Providers perspective.- Innovation Regional Policy and
Smart Specialization: European Countries and Ukraine.- Risk Management in the
non-profit Public Sector Hazards of a Lack of Reflection within the Police
Force.- The Classifier Models Usage for the Recruitment Process Forecasting
for Applicants of Higher Education to Universities of Ukraine.- Virtual
Museum Design in Sustainable Cultural Heritage: A Literature Review.-
Reputation of a non-profit organisation - A quantitative-empirical study
embedded in risk management on police reputation and reputation loss.-
Artificial intelligence application for customer behavior and churn
prediction.- Workplace Discrimination from the Perspective of Leaders of
Slovak Enterprises Pilot Study.- Performance evaluation of the IEEE802.11ax
amendment.- Virtual Agile Collaboration During a Lockdown: Case Study.-
Flex-Route Transit: Problem definition, case studies and development over
years in optimization literature.- Development of regional IT clusters in
conditions of permanent socio-economic threats.- Information and economic
mechanisms for the development of system integration in the management of
enterprises' business processes.- Aggregation of resumes and extraction of
information.- Review of Automatic Speech Recognition Systems for Ukrainian
and English Language.- Strategic Direction of Financial Activities of EU
States in Digital Business Models.- Alzheimers Disease Diagnosis Using
Machine Learning Approach.