Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data Driven Approaches for Healthcare: Machine learning for Identifying High Utilizers [Taylor & Francis e-book]

(University of Florida, Gainesville, USA), , (University of Kentucky, KY, USA), (University of Florida, FL. USA)
  • Formāts: 118 pages, 25 Halftones, black and white
  • Sērija : Chapman & Hall/CRC Big Data Series
  • Izdošanas datums: 07-Oct-2019
  • Izdevniecība: Chapman & Hall/CRC
  • ISBN-13: 9780429342769
  • Taylor & Francis e-book
  • Cena: 231,23 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Standarta cena: 330,33 €
  • Ietaupiet 30%
  • Formāts: 118 pages, 25 Halftones, black and white
  • Sērija : Chapman & Hall/CRC Big Data Series
  • Izdošanas datums: 07-Oct-2019
  • Izdevniecība: Chapman & Hall/CRC
  • ISBN-13: 9780429342769

Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.

Key Features:

  • Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes
  • Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers
  • Presents descriptive data driven methods for the high utilizer population
  • Identifies a best-fitting linear and tree-based regression model to account for patients’ acute and chronic condition loads and demographic characteristics
  • Chapter 1 Introduction
    1(6)
    1.1 Motivation
    1(1)
    1.2 Goals of Data-Driven Approaches for High Utilizers
    2(1)
    1.3 Challenges
    3(1)
    1.4 Book Organization
    4(3)
    Chapter 2 Overview of Health Care Data
    7(8)
    2.1 Type of Health Care Data
    7(2)
    2.2 Structure of Health Care Data
    9(3)
    2.2.1 Structured Health Care Data
    9(1)
    2.2.1.1 Diagnosis Codes
    9(1)
    2.2.1.2 Procedure Codes
    10(1)
    2.2.1.3 Pharmaceutical Codes
    11(1)
    2.2.2 Unstructured Health Care Data
    12(1)
    2.3 Common Data Sources for High Utilizers
    12(3)
    2.3.1 Administrative Claims Data
    13(1)
    2.3.2 PCORnet Common Data Model
    13(2)
    Chapter 3 Machine Learning Modeling from Health Care Data
    15(14)
    3.1 Supervised Models
    15(4)
    3.1.1 Ordinary Least Squares Linear Regression (LR)
    15(1)
    3.1.2 Regularized Regression (LASSO)
    16(1)
    3.1.3 Gradient Boosting Machine (GBM)
    16(1)
    3.1.4 Recurrent Neural Networks (RNN)
    17(2)
    3.2 Interpreting Supervised Models
    19(3)
    3.2.1 Global Interpretation: Understand Trained Model
    19(1)
    3.2.2 Local Interpretation: Understand Each Prediction
    20(1)
    3.2.3 Prediction Confidence
    21(1)
    3.2.3.1 Voting and Consensus Rate
    21(1)
    3.2.3.2 Providing Confidence Intervals
    21(1)
    3.3 Unsupervised Models
    22(3)
    3.3.1 Clinical Phenotyping
    22(1)
    3.3.2 Behavioral Phenotyping: Clustering Inter-Arrival Time of Health Care Encounters
    22(1)
    3.3.2.1 Histogram Representations of Asynchronous Time Series
    23(1)
    3.3.2.2 Wasserstein Distance
    23(2)
    3.3.2.3 Spectral Clustering
    25(1)
    3.4 Discussion
    25(4)
    Chapter 4 Descriptive Analysis of High Utilizers
    29(18)
    4.1 Threshold-Based Methods for Frequent Emergency Department Users
    29(10)
    4.1.1 Background
    29(1)
    4.1.2 Methods
    30(1)
    4.1.2.1 Approach
    30(1)
    4.1.2.2 Study Population
    30(1)
    4.1.2.3 Operational Definitions
    30(1)
    4.1.2.4 Medical Expenditures
    31(1)
    4.1.2.5 Enrollee Sociodemographics
    31(1)
    4.1.2.6 Diagnostic History
    32(1)
    4.1.2.7 New York University ED Profiling Algorithm
    32(1)
    4.1.2.8 Frequent and Persistent Users
    32(1)
    4.1.2.9 Annualized Visits
    32(1)
    4.1.2.10 Statistical Analyses
    32(1)
    4.1.3 Results
    33(1)
    4.1.4 Characteristics of ED Users
    33(3)
    4.1.4.1 Limitations
    36(1)
    4.1.5 Discussion
    37(1)
    4.1.5.1 Sociodemographics
    37(1)
    4.1.5.2 Setting-Specific, High-Frequency Use
    37(1)
    4.1.5.3 Cost Concentrations
    37(1)
    4.1.5.4 Chronic, Comorbid Conditions, Mental Illness, and SUDs
    38(1)
    4.1.5.5 Inappropriate and/or Avoidable Visits
    38(1)
    4.1.5.6 Persistence
    39(1)
    4.2 Temporal Consistency of High Utilizers
    39(8)
    4.2.1 Background
    39(1)
    4.2.2 Methods
    39(1)
    4.2.2.1 Data
    39(1)
    4.2.2.2 Experiment Setup
    40(1)
    4.2.3 Results
    40(1)
    4.2.3.1 Entire Adult Population
    40(2)
    4.2.3.2 Temporal Correlation for the Top 10% Population
    42(1)
    4.2.3.3 Chronic Conditions Cohorts
    43(2)
    4.2.4 Discussion
    45(2)
    Chapter 5 Residuals Analysis for Identifying High Utilizers
    47(18)
    5.1 Background
    47(1)
    5.2 Data and Methods
    48(5)
    5.2.1 Study Population
    48(1)
    5.2.2 Data Preprocessing
    48(1)
    5.2.3 Model
    48(1)
    5.2.3.1 Linear Regression
    49(1)
    5.2.3.2 Tree-Based Model
    49(1)
    5.2.4 Fitting the Model
    50(1)
    5.2.4.1 Fitting Linear Regression
    50(1)
    5.2.4.2 Fitting Tree-Based Model
    51(1)
    5.2.5 Identifying the High Residuals Population
    52(1)
    5.2.6 Breakdown Residuals
    52(1)
    5.2.7 Stratified Model
    53(1)
    5.3 Results
    53(10)
    5.3.1 Compare Linear Regression and Tree-Based Model
    53(1)
    5.3.2 Characterizing the High Utilizers
    54(1)
    5.3.2.1 Demographics, Health Conditions, and Utilization
    55(1)
    5.3.2.2 Temporal Consistency of Residuals
    55(2)
    5.3.3 Breakdown Residuals to ICD-9-CM Codes
    57(1)
    5.3.3.1 Essential Hypertension
    58(1)
    5.3.3.2 Chronic Kidney Disease
    59(1)
    5.3.4 Stratified Models by Service Settings
    60(1)
    5.3.4.1 Residuals and Potentially Preventable Readmissions (PPR)
    60(1)
    5.3.4.2 Residuals and Potentially Preventable Emergency Department Visits (PPV)
    61(2)
    5.3.4.3 Residuals and Future Potentially Preventable Events
    63(1)
    5.4 Discussion
    63(2)
    Chapter 6 Machine Learning Results for High Utilizers
    65(22)
    6.1 Predicting Hospital Readmissions
    65(10)
    6.1.1 Background
    65(1)
    6.1.2 Data and Methods
    66(1)
    6.1.2.1 Dataset
    66(1)
    6.1.2.2 Methods
    67(1)
    6.1.2.3 Regularized Logistic Regression (LASSO)
    68(1)
    6.1.2.4 Gradient Boosting Machine (GBM)
    68(1)
    6.1.2.5 Deep Neural Networks (DNN)
    68(1)
    6.1.3 Results
    69(1)
    6.1.3.1 Prediction Accuracy
    69(1)
    6.1.3.2 Interpret Models and Predictions
    70(2)
    6.1.3.3 Prediction Confidence
    72(2)
    6.1.4 Discussion
    74(1)
    6.2 Predicting Health Care Expenditure
    75(7)
    6.2.1 Background
    75(1)
    6.2.2 Methods
    75(1)
    6.2.2.1 Data
    75(1)
    6.2.2.2 Objectives
    75(1)
    6.2.2.3 Predictors
    76(1)
    6.2.2.4 Predictive Models
    76(1)
    6.2.2.5 Model Selection and Validation
    76(1)
    6.2.3 Prediction Performance
    77(1)
    6.2.3.1 Baseline
    77(1)
    6.2.3.2 Choice of Period Length
    77(1)
    6.2.3.3 Using Additional Information
    78(1)
    6.2.3.4 Including Additional Prior Periods
    79(1)
    6.2.4 Interpreting the Models
    80(1)
    6.2.5 Choosing the Best Model
    81(1)
    6.2.6 Discussion
    82(1)
    6.3 Clustering Asynchronous Health Care Encounters Time Series
    82(5)
    6.3.1 Emergency Department Visits Time Series
    83(1)
    6.3.2 Inpatient Hospital Stays Time Series
    83(1)
    6.3.3 Discussion
    84(3)
    Chapter 7 Conclusions
    87(2)
    Appendix A Acknowledgment 89(2)
    Bibliography 91(14)
    Index 105
    Chengliang Yang, Department of Computer Science, University of Florida Chris Delcher, Institute of Child Health Policy, University of Florida Elizabeth Shenkman, Institute of Child Health Policy, University of Florida Sanjay Ranka, Department of Computer Science, University of Florida.