Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop

  • Formāts: 78 pages
  • Izdošanas datums: 09-Oct-2019
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309494236
  • Formāts - EPUB+DRM
  • Cena: 68,87 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 78 pages
  • Izdošanas datums: 09-Oct-2019
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309494236

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Additive manufacturing (AM) is the process in which a three-dimensional object is built by adding subsequent layers of materials. AM enables novel material compositions and shapes, often without the need for specialized tooling. This technology has the potential to revolutionize how mechanical parts are created, tested, and certified. However, successful real-time AM design requires the integration of complex systems and often necessitates expertise across domains. Simulation-based design approaches, such as those applied in engineering product design and material design, have the potential to improve AM predictive modeling capabilities, particularly when combined with existing knowledge of the underlying mechanics. These predictive models have the potential to reduce the cost of and time for concept-to-final-product development and can be used to supplement experimental tests.





The National Academies convened a workshop on October 24-26, 2018 to discuss the frontiers of mechanistic data-driven modeling for AM of metals. Topics of discussion included measuring and modeling process monitoring and control, developing models to represent microstructure evolution, alloy design, and part suitability, modeling phases of process and machine design, and accelerating product and process qualification and certification. These topics then led to the assessment of short-, immediate-, and long-term challenges in AM. This publication summarizes the presentations and discussions from the workshop.

Table of Contents



Front Matter 1 Introduction 2 Process Monitoring and Control 3 Microstructure Evolution, Alloy Design, and Part Suitability 4 Process and Machine Design 5 Product and Process Qualification and Certification 6 Summary of Challenges from Subgroup Discussions and Participant Comments Appendixes Appendix A: Registered Workshop Participants Appendix B: Workshop Agenda Appendix C: Workshop Statement of Task
1 Introduction
1(2)
Organization of This Proceedings
2(1)
2 Process Monitoring And Control
3(16)
Measurements and Modeling for Process Monitoring and Control
4(5)
Measurement Science for Process Monitoring and Control
9(2)
Simulations: A Chance for Knowledge-Based Improvement of Additive Manufacturing
11(2)
Discussion
13(2)
References
15(4)
3 Microstructure Evolution, Alloy Design, And Part Suitability
19(9)
Measurements for Additive Manufacturing of Metals
19(3)
Predicting Material State and Performance of Additively Manufactured Parts
22(2)
Discussion
24(3)
References
27(1)
4 Process And Machine Design
28(13)
Modeling Phases of Process and Machine Design
29(4)
Current State of Commercial Powder-Bed Additive Machines--AM Machine Design Issues Impacting Build-to-Build and Part-to-Part Variability
33(2)
Modeling Challenges and Opportunities at the Part Level
35(4)
Discussion
39(1)
References
39(2)
5 Product And Process Qualification And Certification
41(6)
Process Qualification and Technological Validation, from Casting to Additive
41(2)
Modeling and Simulation
43(1)
Discussion
44(2)
Reference
46(1)
6 Summary Of Challenges From Subgroup Discussions And Participant Comments
47(12)
Measurements and Modeling for Process Monitoring and Control
48(2)
Developing Models to Represent Microstructure Evolution, Alloy Design, and Part Suitability
50(2)
Modeling Aspects of Process and Machine Design
52(2)
Accelerating Product and Process Qualification and Certification
54(2)
Individual Response Results
56(1)
References
56(3)
Appendixes
A Registered Workshop Participants
59(2)
B Workshop Agenda
61(5)
C Workshop Statement of Task
66