Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data-Enabled Analytics: DEA for Big Data

Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book explores the novel uses and potentials of Data Envelopment Analysis (DEA) under big data. These areas are of widespread interest to researchers and practitioners alike. Considering the vast literature on DEA, one could say that DEA has been and continues to be, a widely used technique both in performance and productivity measurement, having covered a plethora of challenges and debates within the modelling framework.
Data Envelopment Analysis and Big Data: A Systematic Literature Review with Bibliometric Analysis
1(30)
Vincent Charles
Tatiana Gherman
Joe Zhu
Acceleration of Large-Scale DEA Computations Using Random Forest Classification
31(20)
Anyu Yu
Yu Shi
Joe Zhu
The Estimation of Productive Efficiency Through Machine Learning Techniques: Efficiency Analysis Trees
51(42)
Juan Aparicio
Miriam Esteve
Jesus J. Rodriguez-Sala
Jose L. Zofio
Hybrid Data Science and Reinforcement Learning in Data Envelopment Analysis
93(30)
Chia-Yen Lee
Yu-Hsin Hung
Yen-Wen Chen
Aggregation of Outputs and Inputs for DEA Analysis of Hospital Efficiency: Economics, Operations Research and Data Science Perspectives
123(36)
Bao Hoang Nguyen
Valentin Zelenyuk
Parallel Processing and Large-Scale Datasets in Data Envelopment Analysis
159(16)
Dariush Khezrimotlagh
Network DEA and Big Data with an Application to the Coronavirus Pandemic
175(24)
Hirofumi Fukuyama
William L. Weber
Hierarchical Data Envelopment Analysis for Classification of High-Dimensional Data
199(32)
Ming-Miin Yu
Kok Fong See
Bo Hsiao
Dominance Network Analysis: Hybridizing Dea and Complex Networks for Data Analytics
231(32)
L. Calzada-Infante
S. Lozano
Value Extracting in Relative Performance Appraisal with Network DEA: An Application to U.S. Equity Mutual Funds
263(36)
Hirofumi Fukuyama
Don U. A. Galagedera
Measuring Chinese Bank Performance with Undesirable Outputs: A Slack-Based Two-Stage Network DEA Approach
299(28)
Ya Chen
Mengyuan Wang
Jingyu Yang
Using Network DEA and Grey Prediction Model for Big Data Analysis: An Application in the Global Airline Efficiency
327(30)
Wen-Min Lu
Qian Long Kweh
Mohammad Nourani
Hsiu-Fei Wang
Index 357
Joe Zhu is a Professor of Operations Analytics in the Foisie Business School, Worcester Polytechnic Institute. He is an internationally recognized expert in methods of performance evaluation and benchmarking using Data Envelopment Analysis (DEA), and his research interests are in the areas of operations and business analytics, productivity modeling, and performance evaluation and benchmarking. He has published and co-edited several books focusing on performance evaluation and benchmarking using DEA and developed the DEAFrontier software. With more than 130 journal articles, books, and textbooks along with over 20,000 Google Scholar citations, he is recognized as one of the top authors in DEA with respect to research productivity, h-index, and g-index.

Vincent Charles is a Professor of Management Science and the Director of Research at Buckingham Business School, University of Buckingham, UK. He has published over 110 research works with Pearson Education, Cambridge ScholarsPublishing, UK and other publishers. His area of research includes productivity, quality, efficiency, effectiveness, competitiveness, innovation, and design thinking. He has the following industry exposure for research and consultancy purposes:  advertising, agriculture & agribusiness, transportation, consumer products, banking, education, electronics, and manufacturing.