Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data-Intensive Science

Edited by (Pacific Northwest National Laboratory, Richland, Washington, USA), Edited by (Pacific Northwest National Laboratory, Richland, Washington, USA)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 61,35 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Data-intensive science has the potential to transform scientific research and quickly translate scientific progress into complete solutions, policies, and economic success. But this collaborative science is still lacking the effective access and exchange of knowledge among scientists, researchers, and policy makers across a range of disciplines. Bringing together leaders from multiple scientific disciplines, Data-Intensive Science shows how a comprehensive integration of various techniques and technological advances can effectively harness the vast amount of data being generated and significantly accelerate scientific progress to address some of the worlds most challenging problems.

In the book, a diverse cross-section of application, computer, and data scientists explores the impact of data-intensive science on current research and describes emerging technologies that will enable future scientific breakthroughs. The book identifies best practices used to tackle challenges facing data-intensive science as well as gaps in these approaches. It also focuses on the integration of data-intensive science into standard research practice, explaining how components in the data-intensive science environment need to work together to provide the necessary infrastructure for community-scale scientific collaborations.

Organizing the material based on a high-level, data-intensive science workflow, this book provides an understanding of the scientific problems that would benefit from collaborative research, the current capabilities of data-intensive science, and the solutions to enable the next round of scientific advancements.

Recenzijas

"This nicely integrated collection of contributions is an attempt to familiarize readers with this challenging aspect of science in the 21st century. The editors draw a picture of the future of scientific data production along the lines of the grand challenges identified by the National Academy of Engineering. ... This book is elegantly written, and intended for decision-makers. ... It achieves a good balance between technical and strategic thinking. This makes it a good choice for scientific decision-makers such as directors of institutes and universities, who are in fact in a position to shape the future networking structures for global data management." --Hamid R. Noori, Computing Reviews

Editors xi
Contributors xiii
Chapter 1 What Is Data-Intensive Science?
1(14)
Terence Critchlow
Kerstin Kleese van Dam
Chapter 2 Where Does All the Data Come From?
15(40)
Geoffrey Fox
Tony Hey
Anne Trefethen
Section I Data-Intensive Grand Challenge Science Problems
Chapter 3 Large-Scale Microscopy Imaging Analytics for In Silico Biomedicine
55(18)
Joel Saltz
Fusheng Wang
George Teodoro
Lee Cooper
Patrick Widener
Jun Kong
David Gutman
Tony Pan
Sharath Cholleti
Ashish Sharma
Daniel Brat
Tahsin Kurc
Chapter 4 Answering Fundamental Questions about the Universe
73(30)
Eric S. Myra
F. Douglas Swesty
Chapter 5 Materials of the Future: From Business Suits to Space Suits
103(18)
Mark F. Horstemeyer
Section II Case Studies
Chapter 6 Earth System Grid Federation: Infrastructure to Support Climate Science Analysis as an International Collaboration: A Data-Driven Activity for Extreme-Scale Climate Science
121(30)
Dean N. Williams
Ian T. Foster
Bryan Lawrence
Michael Lautenschlager
Chapter 7 Data-Intensive Production Grids
151(12)
Bob Jones
Ian Bird
Chapter 8 EUDAT: Toward a Pan-European Collaborative Data Infrastructure
163(22)
D. Lecarpentier
J. Reetz
P. Wittenburg
Section III From Challenges to Solutions
Chapter 9 Infrastructure for Data-Intensive Science: A Bottom-Up Approach
185(30)
Eli Dart
William Johnston
Chapter 10 A Posteriori Ontology Engineering for Data-Driven Science
215(30)
Damian D. G. Gessler
Cliff Joslyn
Karin Verspoor
Chapter 11 Transforming Data into the Appropriate Context
245(34)
Bill Howe
Chapter 12 Bridging the Gap between Scientific Data Producers and Consumers: A Provenance Approach
279(22)
Eric G. Stephan
Paulo Pinheiro
Kerstin Kleese van Dam
Chapter 13 In Situ Exploratory Data Analysis for Scientific Discovery
301(50)
Kanchana Padmanabhan
Sriram Lakshminarasimhan
Zhenhuan Gong
John Jenkins
Neil Shah
Eric Schendel
Isha Arkatkar
Rob Ross
Scott Klasky
Nagiza F. Samatova
Chapter 14 Interactive Data Exploration
351(32)
Brian Summa
Attilay Gyulassy
Peer-Timo Bremer
Valerio Pascucci
Chapter 15 Linked Science: Interconnecting Scientific Assets
383(18)
Tomi Kauppinen
Alkyoni Baclatzi
Carsten Kebler
Chapter 16 Summary and Conclusions
401(4)
Terence Critchlow
Kerstin Kleese van Dam
Index 405
Terence Critchlow is the chief scientist of the Scientific Data Management Group in the Computational Sciences and Mathematics Division of the Pacific Northwest National Laboratory (PNNL), where he leads projects on data analysis, data dissemination, and workflow system. A senior member of IEEE and ACM, Dr. Critchlow earned a PhD in computer science from the University of Utah. His research focuses on large-scale data management, metadata, data analysis, online analytical processing, data integration, data dissemination, and scientific workflows.

Kerstin Kleese van Dam is an associate division director and lead of the Scientific Data Management Group at PNNL. In 2006, she received the British Female Innovators and Inventors Silver Award for the effective management of scientific data. Her research focuses on data management and analysis in extreme-scale environments.