Atjaunināt sīkdatņu piekrišanu

Data Orchestration in Deep Learning Accelerators [Mīkstie vāki]

  • Formāts: Paperback / softback, 164 pages, height x width: 235x191 mm
  • Sērija : Synthesis Lectures on Computer Architecture
  • Izdošanas datums: 18-Aug-2020
  • Izdevniecība: Morgan & Claypool Publishers
  • ISBN-10: 1681738694
  • ISBN-13: 9781681738697
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 102,83 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 164 pages, height x width: 235x191 mm
  • Sērija : Synthesis Lectures on Computer Architecture
  • Izdošanas datums: 18-Aug-2020
  • Izdevniecība: Morgan & Claypool Publishers
  • ISBN-10: 1681738694
  • ISBN-13: 9781681738697
Citas grāmatas par šo tēmu:
This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore's Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.
Preface
Acknowledgments
Introduction to Data Orchestration
Dataflow and Data Reuse
Buffer Hierarchies
Networks-on-Chip
Putting it Together: Architecting a DNN Accelerator
Modeling Accelerator Design Space
Orchestrating Compressed-Sparse Data
Conclusions
Bibliography
Authors' Biographies