Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data Quality Management in the Data Age: Excellence in Data Quality for Enhanced Digital Economic Growth

  • Formāts: EPUB+DRM
  • Sērija : SpringerBriefs in Service Science
  • Izdošanas datums: 29-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031718717
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : SpringerBriefs in Service Science
  • Izdošanas datums: 29-Oct-2024
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031718717

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book addresses data quality management for data markets, including foundational quality issues in modern data science. By clarifying the concept of data quality, its impact on real-world applications, and the challenges stemming from poor data quality, it will equip data scientists and engineers with advanced skills in data quality management, with a particular focus on applications within data markets. This will help them create an environment that encourages potential data sellers with high-quality data to join the market, ultimately leading to an improvement in overall data quality.





High-quality data, as a novel factor of production, has assumed a pivotal role in driving digital economic development. The acquisition of such data is particularly important for contemporary decision-making models. Data markets facilitate the procurement of high-quality data and thereby enhance the data supply. Consequently, potential data sellers with high-quality data are incentivized to enter the market, an aspect that is particularly relevant in data-scarce domains such as personalized medicine and services.





Data scientists have a pivotal role to play in both the intellectual vitality and the practical utility of high-quality data. Moreover, data quality control presents opportunities for data scientists to engage with less structured or ambiguous problems. The book will foster fruitful discussions on the contributions that various scientists and engineers can make to data quality and the further evolution of data markets.

Introduction of data quality management.- Quality management in Data Science.- Pillars of data quality management.- Tools of data quality management.- Experimental designs for data quality control.- High-quality data collection in data markets.- Ghost data in data quality management.- Summary.

Haiyan Yu is an Associate Professor at Chongqing University of Posts and Telecommunications (China). He obtained his Ph.D. from Tianjin University in 2015. Subsequently, he served as a Postdoctoral Fellow at the University of Electronic Science and Technology of China from 2016 to 2017, and at Pennsylvania State University (US) from 2017 to 2020. Additionally, he was a Visiting Scholar at Purdue University (US) from 2020 to 2021. His research interests include causal inference and machine learning, personalized medicine, quality management, constrained optimization, and clinical decision support systems.