Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data Science: 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, Macao, China, September 27-30, 2024, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This three-volume set CCIS 2213-2215 constitutes the refereed proceedings of the 10th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2024, held in Macau, China, during September 2730, 2024.





The 74 full papers and 3 short papers presented in these three volumes were carefully reviewed and selected from 249 submissions.





The papers are organized in the following topical sections:





Part I: Novel methods or tools used in big data and its applications; applications of data science.





Part II: Education research, methods and materials for data science and engine; data security and privacy; big data mining and knowledge management.





Part III: Infrastructure for data science; social media and recommendation system; multimedia data management and analysis.
.- Education research, methods and materials for data science and
engine.



.- An empirical study of the factors influencing the improvement of
education

quality within higher education institutions·



.- Study on the Intercultural Competence of Students in Hainan Vocational
College.



.- Study on the Communicative Competence of Students of Tourism-related
Majors

in Hainan Vocational Colleges.



.- Research on the Learning Adaptability and Learning Effectiveness of
College

Students under the Background of Digital Education.



.- Research on the Adaptability of Vocational College Majors and Industry
Empirical

Study Based on 14 Vocational Colleges in Hainan,China.



.- Practice of the Campus Data Middle Platform Based on Lakehouse Integrated

Architecture.



.- Data Security and Privacy.



.- Reversible Data Hiding for 3D Mesh Model Based on Block Modulus
Encryption

and Multi-MSB Prediction.



.- QR code digital watermarking algorithm based  on GWO.



.- Fast CKKS Algorithm in the SEAL Library.



.- A Transformer-based Video Colorization Method Fusing Local Self-Attention
and

Bidirectional Optical Flow.



.- An NTRU Lattice-Based Chameleon Hash Scheme for Redactable Blockchain
Applications.



.- Traceable Decentralized Policy-Based Chameleon Hash Scheme for Blockchain

Rewriting·



.- SECURE IDENTITY AUTHENTICATION PROTOCOL BASED ON BLOCKCHAIN

IN SMART HOME.



.- False Data Injection Attack Detection Method Based on Long Time Series

Prediction.



.- A Hybrid Iris Recognition System Model based on Presentation Attack
Detection

and Traffic Monitoring Module on AIoT System.



.- Big Data Mining and Knowledge Management.



.- Leveraging Spatial Characteristics in Trajectory Compression: An
Angle-based

Bounded-error Method.



.- HENF: Hierarchical Entity Neighbor Multi-Relational Fusion Network for

Knowledge Graph Completion.



.- TCB Intrusion Detection Method Based on Data Enhancement.



.- Multi-source Heterogeneous Data Joint Diagnosis Method for Transformers
Based

on D-S Evidence Theory.



.- Progressive Federated Learning Scheme Based on Model Pruning.



.- Privacy Protection Data Aggregation Scheme Against Quantum Attacks.



.- LOCATION DATA QUADTREE PARTITIONINGALGORITHM BASED ON

DIFFERENTIAL PRIVACY.



.- RLART: An Adaptive Radix Tree Based on Deep  Reinforcement Learning.