Atjaunināt sīkdatņu piekrišanu

Data Science in Applications 2023 ed. [Hardback]

Edited by , Edited by , Edited by
  • Formāts: Hardback, 252 pages, height x width: 235x155 mm, weight: 613 g, 76 Illustrations, color; 24 Illustrations, black and white; XII, 252 p. 100 illus., 76 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1084
  • Izdošanas datums: 10-Mar-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031244524
  • ISBN-13: 9783031244520
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 154,01 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 181,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 252 pages, height x width: 235x155 mm, weight: 613 g, 76 Illustrations, color; 24 Illustrations, black and white; XII, 252 p. 100 illus., 76 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1084
  • Izdošanas datums: 10-Mar-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031244524
  • ISBN-13: 9783031244520
Citas grāmatas par šo tēmu:

This book provides an overview of a wide range of relevant applications and reveals how to solve them. Many of the latest applications in finance, technology, education, medicine and other important and relevant fields are data-driven. The volumes of data are enormous. Specific methods need to be developed or adapted to solve a particular problem. It illustrates data science in applications. These applications have in common the discovery of knowledge in data and the use of this knowledge to make real decisions. The set of examples presented serves as a recipe book for their direct application to similar problems or as a guide for the development of new, more sophisticated approaches. The intended readership is data scientists looking for appropriate solutions to their problems. In addition, the examples provided serves as material for lectures at universities.

Computational Thinking Design Application for STEAM Education.-
Education Data for Science: Case of Lithuania.- Imbalanced Data
Classification Approach Based on Clustered Training Set.- Baltic States in
Global Value Chains: Quantifying International Production Sharing at
Bilateral and Sectoral Levels.- The Soft Power Of Understanding Social Media
Dynamics: A Data-Driven Approach.- Bootstrapping  Network Autoregressive
Models for Testing Linearity.- Novel data science methodologies for essential
genes identification based on network analysis.- Acoustic Analysis for Vocal
Fold Assessment - Challenges, Trends, and Opportunities.- The Paradigm of an
Explainable Artificial Intelligence (XAI) and Data Science (DS) Based
Decision Support System (DSS).- Stock Portfolio Risk-Return Ratio
Optimisation using Grey Wolf Model.- Towards Seamless Execution of Deep
Learning Application on Heterogeneous HPC Systems.