Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data Science in Engineering, Volume 9: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics 2021

Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 296,82 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Data Science and Engineering Volume 9: Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, 2021, the ninth volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:

Data Science in Engineering Applications

Engineering Mathematics

Computational Methods in Engineering


Chapter
1. Towards a Population-based Structural Health Monitoring, Part V: Networks and Databases.
Chapter
2. Active Learning of Post-Earthquake Structural Damage with Co-Optimal Information Gain and Reconnaissance Cost.
Chapter
3. Uncertainty-Quantified Damage Identification for High-Rate Dynamic Systems.
Chapter
4. Real-time Machine Learning of Vibration Signals.
Chapter
5. Data-Driven Identification of Mistuning in Blisks.
Chapter
6. On Generating Parametrised Structural Data Using Conditional Generative Adversarial Networks.
Chapter
7. Best Paper: On an Application of Graph Neural Networks in Population Based SHM.
Chapter
8. Estimation of Elastic Band Gaps Using Data-Driven Model.
Chapter
9. Damage Localization on Lightweight Structures with Non-Destructive Testing and Machine Learning Techniques.
Chapter
10. Challenges for SHM from Structural Repairs: An Outlier-informed Domain Adaptation Approach.
Chapter
11. On the Application of Heterogeneous Transfer Learning to Population-based Structural Health Monitoring.
Chapter
12. An Unsupervised Deep Auto-Encoder with One-Class Support Vector Machine for Damage Detection.
Chapter
13. Identifying Operations- and Environmental-Insensitive Damage Features.
Chapter
14. Hybrid Concrete Crack Segmentation and Quantification Across Complex Backgrounds without Big Training Dataset.
Chapter
15. Digital Stroboscopy using Event-Driven Imagery.
Chapter
16. Managing System Inspections for Health Monitoring: A Probability of Query Approach.
Chapter
17. Parameter Estimation for Dynamical Systems Under Continuous and Discontinuous Gaussian Noise Using Data Assimilation Techniques.
Chapter
18. Model Reduction of Geometrically Nonlinear Structures via Physics-Informed Autoencoders.
Chapter
19. Techniques to Improve Robustness of Video-Based Sensor Networks.
Chapter
20. Grey-Box Modelling via Gaussian Process Mean Functions for Mechanical Systems.
Chapter
21. On Topological Data Analysis for SHM; An Introduction to Persistent Homology.
Chapter
22. Heteroscedastic Gaussian Processes for Localising Acoustic Emission.
Chapter
23. Transferring Damage Detectors Between Tailplane Experiments.
Chapter
24. High-Rate Structural Health Monitoring and Prognostics: An Overview.
Chapter
25. One Versus All: Best Practices in Combining Multi-Hazard Damage Imagery Training Datasets for Damage Detection for a Deep Learning Neural Network.
Chapter
26. High-Rate Damage Classification and Lifecycle Prediction via Deep Learning.
Chapter
27. A Generalized Technique for Full-field Blind Identification of Travelling Waves and Complex Modes from Video Measurements with Hilbert Transform.
Chapter
28. Privacy-Preserving Structural Dynamics.
Chapter
29. Abnormal Behavior Detection of the Indian River Inlet Bridge through Cross Correlation Analysis of Truck Induced Strains.
Chapter
30. A Video-Based Crack Detection in Concrete Surfaces.
Chapter
31. Bayesian Graph Neural Networks for Strain-Based Crack Localization.
Chapter
32. Routing of Public and Electric Transportation Systems Using Reinforcement Learning.
Chapter
33. Vibration based Damage Detection and Identification in a CFRP Truss with Deep Learning and Finite Element Generated Data.
Chapter
34. Parametric Amplification in a Stochastic Nonlinear Piezoelectric Energy Harvester via Machine Learning.
Ramin Madarshahian, University of San Diego, CA, USA; Francois Hemez, Lawrence Livermore National Laboratory, Livermore, CA, USA.