Atjaunināt sīkdatņu piekrišanu

E-grāmata: Data Science: Third International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017, Changsha, China, September 22-24, 2017, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This two volume set (CCIS 727 and 728) constitutes the refereed proceedings of the Third International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017 (originally ICYCSEE) held in Changsha, China, in September 2017.

The 112 revised full papers presented in these two volumes were carefully reviewed and selected from 987 submissions. The papers cover a wide range of topics related to Basic Theory and Techniques for Data Science including Mathematical Issues in Data Science, Computational Theory for Data Science, Big Data Management and Applications, Data Quality and Data Preparation, Evaluation and Measurement in Data Science, Data Visualization, Big Data Mining and Knowledge Management, Infrastructure for Data Science, Machine Learning for Data Science, Data Security and Privacy, Applications of Data Science, Case Study of Data Science, Multimedia Data Management and Analysis, Data-driven Scientific Research, Data-driven Bioinformatics, D

ata-driven Healthcare, Data-driven Management, Data-driven eGovernment, Data-driven Smart City/Planet, Data Marketing and Economics, Social Media and Recommendation Systems, Data-driven Security, Data-driven Business Model Innovation, Social and/or organizational impacts of Data Science.

Mathematical Issues in Data Science.- Computational Theory for Data Science, Big Data Management and Applications.- Data Quality and Data Preparation.- Evaluation and Measurement in Data Science.- Data Visualization.- Big Data Mining and Knowledge Management.- Infrastructure for Data Science.- Machine Learning for Data Science.- Data Security and Privacy.- Applications of Data Science.- Case Study of Data Science.- Multimedia Data Management and Analysis.- Data-driven Scientific Research.- Data-driven Bioinformatics.- Data-driven Healthcare.- Data-driven Management.- Data-driven eGovernment.- Data-driven Smart City/Planet.- Data Marketing and Economics.- Social Media and Recommendation Systems.- Data-driven Security.- Data-driven Business Model Innovation.- Social and/or organizational impacts of Data Science.