Atjaunināt sīkdatņu piekrišanu

E-grāmata: Database Systems for Advanced Applications: 24th International Conference, DASFAA 2019, Chiang Mai, Thailand, April 22-25, 2019, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 100,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This two-volume set LNCS 11446 and LNCS 11447 constitutes the refereed proceedings of the 24th International Conference on Database Systems for Advanced Applications, DASFAA 2019, held in Chiang Mai, Thailand, in April 2019.





The 92 full papers and 64 short papers were carefully selected from a total of 501 submissions. In addition, 13 demo papers and 6 tutorial papers are included. The full papers are organized in the following topics: big data; clustering and classification; crowdsourcing; data integration; embedding; graphs; knowledge graph; machine learning; privacy and graph; recommendation; social network; spatial; and spatio-temporal. The short papers, demo papers, and tutorial papers can be found in the volume LNCS 11448, which also includes the workshops of DASFAA 2019.

Machine Learning.- An Approach Based on Bayesian Networks for Query Selectivity Estimation.- An Exploration of Cross-Modal Retrieval for Unseen Concepts.- Continuous Patient-centric Sequence Generation via Sequentially Coupled Adversarial Learning.- DMMAM: A Deep Multi-source Multi-task Attention Model for Intensive Care Unit Diagnosis.- Learning k-Occurrence Regular Expressions with Interleaving.- Learning from User Social Relation for Document Sentiment Classification.- Reinforcement Learning to Diversify Recommendations.- Retweeting Prediction using Matrix Factorization with Binomial Distribution and Contextual Information.- Sparse Gradient Compression for Distributed SGD.- STDR: A Deep Learning Method for Travel Time Estimation.- Using Fractional Latent Topic to Enhance Recurrent Neural Network in Text Similarity Modeling.- Efficiently Mining Maximal Diverse Frequent Itemsets.- Privacy and Graph.- Efficient Local Search for Minimum Dominating Sets in Large Graphs.- Multi-level Graph Compression for Fast Reachability Detection.- Multiple Privacy Regimes Mechanism For Local Differential Privacy.- Privacy Preserving Elastic Stream Processing with Clouds using Homomorphic Encryption.- Select the Best for Me: Privacy-preserving Polynomial Evaluation Algorithm over Road Network.- Recommendation.- AdaCML: Adaptive Collaborative Metric Learning for Recommendation.- Adaptive Attention-Aware Gated Recurrent Unit for Sequential Recommendation.- Attention and Convolution Enhanced Memory Network for Sequential Recommendation.- Attention-based Neural Tag Recommender System.- Density Matrix based Preference Evolution Networks for E-commerce Recommendation.- Multi-Source Multi-Net Micro-Video Recommendation with Hidden Item Category Discovery.- Incorporating Task-oriented Representation in Text Classification.- Music Playlist Recommendation with Long Short-Term Memory.- Online Collaborative Filtering with Implicit Feedback.- Subspace Ensemble-based Neighbor User Searching for Neighborhood-based Collaborative Filtering.- Towards Both Local and Global Query Result Diversification.- Social Network.- Structured Spectral Clustering of PurTree Data.- Dynamic stochastic block model with scale-free characteristic for temporal complex networks.- In Good Company: Efficient Retrieval of the Top-k Most Relevant Event-Partner Pairs.- Local Experts Finding across Multiple Social Networks.- SBRNE: An Improved Unified Framework for Social and Behavior Recommendations with Network Embedding.- User Intention-based Document Summarization on Heterogeneous Sentence Networks.- Spatial.- A Hierarchical Index Structure for Region-aware Spatial Keyword Search with Edit Distance Constraint.- Collective POI Querying Based on Multiple Keywords and User Preference.- DPSCAN: Structural Graph Clustering Based on Density Peaks.- Efficient Processing of Spatial Group Preference Queries.- Reverse-Auction-Based Competitive Order Assignment for Mobile Taxi-Hailing Systems.- Top-k Spatio-Topic Query on Social Media Data.- Spatio-temporal.- A Frequency-aware Spatio-Temporal Network for Traffic Flow Prediction.- Efficient Algorithms for Solving Aggregate Keyword Routing Problems.- Perceiving Topic Bubbles: Local Topic Detection in Spatio-temporal Tweet Stream.- Real-Time Route Planning and Online Order Dispatch for Bus-Booking Platforms.- STL: Online Detection of Taxi Trajectory Anomaly based on Spatial-Temporal Laws.