Atjaunināt sīkdatņu piekrišanu

E-grāmata: Databases for Data-Centric Geotechnics: Site Characterization

Edited by (Singapore University of Technology and Design, Singapore), Edited by
  • Formāts - PDF+DRM
  • Cena: 62,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Databases for Data-Centric Geotechnics forms a definitive reference and guide to databases in geotechnical and rock engineering, to enhance decision-making in geotechnical practice using data-driven methods. This first volume pertains to site characterization. The opening chapter presents an in-depth analysis of site data attributes, including the establishment of a new taxonomy of site data under “4S” (site generalizations, spatial features, sampling characteristics, and smart data) to provide a novel agenda for data-driven site characterization. Type 3 machine learning methods (disruptive value) are possible as sensors become more pervasive and more intelligent. A comprehensive overview of site characterization information is also presented with a focus on its availability, coverage, value to decision making, and challenges. The remaining13 chapters cover databases of soil and rock properties and the application of these databases to rock socket behavior, rock classification, settlement on soft marine clays, permeability of fine-grained soils, and liquefaction among others. The databases were compiled from studies undertaken in many countries including Austria, Australia, Brazil, Canada, China, France, Finland, Germany, India, Iran, Japan, Korea, Malaysia, Mexico, New Zealand, Norway, Singapore, Sweden, Thailand, the United Kingdom, and the United States.

This volume on site characterization is a companion to the volume on geotechnical structures. Databases for Data-Centric Geotechnics represents the most diverse and comprehensive assembly of database research in a single publication (consisting of two volumes) to date. It follows from Model Uncertainties for Foundation Design, also published by CRC Press, and suits specialist geotechnical engineers, researchers and graduate students.



This is the first of two volumes forming a definitive guide to databases in geotechnical and rock engineering to enhance decision-making in geotechnical practice using data-driven methods. This volume offers a deep analysis of site data attributes before presenting databases of soil and rock properties and their applications.

Recenzijas

'The publication of this volume on site characterization will provide a much-needed impetus to research on data-centric geotechnics'

-- Yu Wang, in Geodata and AI

1. Role of site characterization information in data-centric
geotechnics.
2. Selection of rock hydromechanical parameters for rock
foundation
design: a database approach.
3. Evaluation of soil/rock properties using
databases.
4. Undrained shear strength of Finnish soft clays: a database
perspective.
5. Role of databases in the evaluation of soil properties.
6.
New laboratory database of hydraulic conductivity measurements on
fine-grained soils.
7. Normalised active undrained shear strengths of soft
Scandinavian clays a data-centric and a geomechanical approach.
8.
Prediction for the mechanical response of gravels.
9. Evaluation of
compressibility properties for soft marine clays.
10. An engineering
geological parameter database of tunnel surrounding rock and its application.
11. Exploring challenges via analysis of multivariate geotechnical
proper-ties: insights from large-scale local sampling of Japanese marine
clay.
12. In situ test-based evaluation of soil effective stress strength
properties and stress history.
13. Mechanical-statistical evaluation of soil
properties.
14. Data-centric seismic soil liquefaction assessment:
approaches, data, and tools.
15. Prediction for soil design properties based
on a multivariate database for Shanghai soft clay.
Kok-Kwang Phoon is Cheng Tsang Man Chair Professor and President of the Singapore University of Technology and Design. He was awarded the ASCE Norman Medal twice in 2005 and 2020, the Humboldt Research Award in 2017, and the ASCE Alfredo Ang Award in 2024. He is the Founding Editor of Georisk and Geodata and AI. He is a Fellow of the Academy of Engineering Singapore and Singapore National Academy of Science.

Chong Tang is Professor at Dalian University of Technology in China and a former senior research fellow at the National University of Singapore. He was awarded the ASCE Norman Medal in 2020.