Atjaunināt sīkdatņu piekrišanu

E-grāmata: Decorated Dyck Paths, Polyominoes, and the Delta Conjecture

  • Formāts - PDF+DRM
  • Cena: 108,57 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"We discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case the main results of both Haglund ("A proof of the Schroder conjecture", 2004) and Aval et al. ("Statistics on parallelogram polyominoes and a analogue of the Narayana numbers", 2014). This settles in particular the cases and of the Delta conjecture of Haglund, Remmel and Wilson ("The delta conjecture", 2018). Along the way, we introduce some new statistics, formulate some new conjectures, prove some new identities of symmetric functions, and answer a few open problems in the literature (e.g., from Aval, Bergeron and Garsia [ 2015], Haglund, Remmel and Wilson [ 2018], and Zabrocki [ 2019]). The main technical tool is a new identity in the theory of Macdonald polynomials that extends a theorem of Haglund in "A proof of the Schroder conjecture" (2004)"--

D'Adderio, Iraci, and Wyngaerd discuss the combinatorics of decorated Dyck paths and decorated parallelogram polyominoes, extending to the decorated case in the main results of both Haglund (2001) and Aval et al. (2014). This settles in particular the cases of the Delta conjecture of Haglund, Remmel, and Wilson (2018), they say. They cover background and definitions, conjectures, and their results, then provide proofs for symmetric functions, combinatorics of decorated Dyck paths, combinatorics of polyominoes, putting the pieces together, and square paths. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Michele D'Adderio, Universite Libre de Bruxelles, Belgium.

Alessandro Iraci, Universita di Pisa, Italy, and Universite Libre de Bruxelles, Belgium.

Anna Vanden Wyngaerd, Universite Libre de Bruxelles, Belgium.