nav atļauts
nav atļauts
Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).
Nepieciešamā programmatūra
Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)
Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)
Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.
DGM4MICCAI 2021 - Image-to-Image Translation, Synthesis.- Frequency-Supervised MRI-to-CT Image Synthesis.- Ultrasound Variational Style Transfer to Generate Images Beyond the Observed Domain.- 3D-StyleGAN: A Style-Based Generative Adversarial Network for Generative Modeling of Three-Dimensional Medical Images.- Bridging the gap between paired and unpaired medical image translation.- Conditional generation of medical images via disentangled adversarial inference. -CT-SGAN: Computed Tomography Synthesis GAN.- Hierarchical Probabilistic Ultrasound Image Inpainting via Variational Inference.- CaCL: class-aware codebook learning for weakly supervised segmentation on diffuse image patterns.- BrainNetGAN: Data augmentation of brain connectivity using generative adversarial network for dementia classification.- Evaluating GANs in medical imaging.- DGM4MICCAI 2021 - AdaptOR challenge.- Improved Heatmap-based Landmark Detection.- Cross-domain Landmarks Detection in Mitral Regurgitation.- DALI 2021.- Scalable Semi-supervised Landmark Localization for X-ray Images using Few-shot Deep Adaptive Graph.- Semi-supervised Surgical Tool Detection Based on Highly Confident Pseudo Labeling and Strong Augmentation Driven Consistency.- One-shot Learning for Landmarks Detection.- Compound Figure Separation of Biomedical Images with Side Loss.- Data Augmentation with Variational Autoencoders and Manifold Sampling.- Medical image segmentation with imperfect 3D bounding boxes.- Automated Iterative Label Transfer Improves Segmentation of Noisy Cells in Adaptive Optics Retinal Images.- How Few Annotations are Needed for Segmentation using a Multi-planar U-Net?.- FS-Net: A New Paradigm of Data Expansion for Medical Image Segmentation.- An Efficient Data Strategy for the Detection of Brain Aneurysms from MRA with Deep Learning.- Evaluation of Active Learning Techniques on Medical Image Classification with Unbalanced Data Distributions.- Zero-Shot Domain Adaptation in CT Segmentation by Filtered Back Projection Augmentation.- Label Noise in Segmentation Networks : Mitigation Must Deal with Bias.- DeepMCAT: Large-Scale Deep Clustering for Medical Image Categorization.- MetaHistoSeg: A Python Framework for Meta Learning in Histopathology Image Segmentation.