Atjaunināt sīkdatņu piekrišanu

E-grāmata: Deep Learning Applications, Volume 4

Edited by , Edited by
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book presents a compilation of extended versions of selected papers from 20th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2021). It focuses on deep learning networks and their applications in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments. It highlights novel ways of using deep neural networks to solve real-world problems, and also offers insights into deep learning architectures and algorithms, making it an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers. The book is fourth in the series published since 2017.

Identification of Human Papillomavirus from Super Resolution Microscopic
Images Generated Using Deep Learning Architectures.- Evaluation of Sequential
and Temporally-Embedded Deep Learning Models for Health Outcome
Prediction.- Transfer Learning for Depression Screening from Follow-up
Clinical Interview Questions.- Early Mental Health Uncovering with Short
Scripted and Unscripted Voice Recordings.- A Comprehensive Analysis of Aspect
Oriented Suggestion Extraction from Online Reviews.
Dr. M. Arif Wani is currently a Professor at the University of Kashmir, having previously served as a Professor at California State University Bakersfield. He completed his M. Tech. in Computer Technology at the   Indian Institute of Technology, Delhi, and his Ph.D. in Computer Vision at Cardiff University, UK. His research interests are in the area of machine learning, with a focus on neural networks, deep learning, inductive learning, and support vector machines, and with application to areas that include computer vision, pattern recognition, classification, prediction and analysis of gene expression datasets. He has published many papers in reputed journals and conferences in these areas. Dr. Wani has co-authored the book Advances in Deep Learning, co-edited many books in Machine Learning and Applications and Deep Learning Applications. He is a member of many academic and professional bodies. Dr. Vasile Palade is currently a Professor of Artificial Intelligence and Data Science at Coventry University, UK. He previously held several academic and research positions at the University of Oxford - UK, University of Hull - UK, and the University of Galati - Romania. His research interests are in the area of machine learning, with a focus on neural networks and deep learning, and with main application to computer vision, social network data analysis and web mining, autonomous driving, smart cities, health, among others. Prof. Palade is author and co-author of more than 200 papers in journals and conference proceedings as well as several books on machine learning and applications. He is an Associate Editor for several reputed journals, such as IEEE Transactions on Neural Networks and Learning Systems, Neural Networks, Knowledge and Information Systems. He has delivered keynote talks to international conferences on machine learning and applications. Dr. Vasile Palade is an IEEE Senior Member.