nav atļauts
nav atļauts
Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).
Nepieciešamā programmatūra
Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)
Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)
Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.
Chapter 1 Introduction: Deep Learning in Natural Language Processing
1.1 OUTLINE OF THE BOOK
1.2 FROM ENGINEERING TO COGNITIVE SCIENCE
1.3 ELEMENTS OF DEEP LEARNING
1.4 TYPES OF DEEP NEURAL NETWORKS
1.5 AN EXAMPLE APPLICATION
1.6 SUMMARY AND CONCLUSIONS
Chapter 2 Learning Syntactic Structure with Deep Neural Networks
2.1 SUBJECT-VERB AGREEMENT
2.2 ARCHITECTURE AND EXPERIMENTS
2.3 HIERARCHICAL STRUCTURE
2.4 TREE DNNS
2.5 SUMMARY AND CONCLUSIONS
Chapter 3 Machine Learning and The Sentence Acceptability Task
3.1 GRADIENCE IN SENTENCE ACCEPTABILITY
3.2 PREDICTING ACCEPTABILITY WITH MACHINE LEARNING MODELS
3.3 ADDING TAGS AND TREES
3.4 SUMMARY AND CONCLUSIONS
Chapter 4 Predicting Human Acceptability Judgments in Context
4.1 ACCEPTABILITY JUDGMENTS IN CONTEXT
4.2 TWO SETS OF EXPERIMENTS
4.3 THE COMPRESSION EFFECT AND DISCOURSE COHERENCE
4.4 PREDICTING ACCEPTABILITY WITH DIFFERENT DNN MODELS
4.5 SUMMARY AND CONCLUSIONS
Chapter 5 Cognitively Viable Computational Models of Linguistic Knowledge
5.1 HOW USEFUL ARE LINGUISTIC THEORIES FOR NLP APPLICATIONS?
5.2 MACHINE LEARNING MODELS VS FORMAL GRAMMAR
5.3 EXPLAINING LANGUAGE ACQUISITION
5.4 DEEP LEARNING AND DISTRIBUTIONAL SEMANTICS 1
5.5 SUMMARY AND CONCLUSIONS
Chapter 6 Conclusions and Future Work
6.1 REPRESENTING SYNTACTIC AND SEMANTIC KNOWLEDGE
6.2 DOMAIN SPECIFIC LEARNING BIASES AND LANGUAGE ACQUISITION
6.3 DIRECTIONS FOR FUTURE WORK
REFERENCES
Author Index
Subject Index