Atjaunināt sīkdatņu piekrišanu

E-grāmata: Deep Learning and Scientific Computing with R torch

  • Formāts: 414 pages
  • Sērija : Chapman & Hall/CRC The R Series
  • Izdošanas datums: 05-Apr-2023
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000862935
  • Formāts - PDF+DRM
  • Cena: 68,87 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 414 pages
  • Sērija : Chapman & Hall/CRC The R Series
  • Izdošanas datums: 05-Apr-2023
  • Izdevniecība: Chapman & Hall/CRC
  • Valoda: eng
  • ISBN-13: 9781000862935

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book aims to be useful to (almost) everyone.  Deep Learning and Scientific Computing with R Torch provides a thorough introduction to torch basics – both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torch.



torch is an R port of PyTorch, one of the two most-employed deep learning frameworks in industry and research. It is also an excellent tool to use in scientific computations. It is written entirely in R and C/C++.

Though still "young" as a project, R torch already has a vibrant community of users and developers. Experience shows that torch users come from a broad range of different backgrounds. This book aims to be useful to (almost) everyone. Globally speaking, its purposes are threefold:

- Provide a thorough introduction to torch basics – both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torch.

-

Again with a focus on conceptual explanation, show how to use torch

in deep-learning applications, ranging from image recognition over time series prediction to audio classification.

- Provide a concepts-first, reader-friendly introduction to selected scientific-computation topics (namely, matrix computations, the Discrete Fourier Transform, and wavelets), all accompanied by torch code you can play with.

Deep Learning and Scientific Computing with R torch is written with first-hand technical expertise and in an engaging, fun-to-read way.

Recenzijas

"The book is very well written and easy to follow with plenty of illustrations and explanations via examples and codes. I have learned a lot from the book and believe that many R users can greatly benefit from it as well even without an extensive machine learning background."

- Yang Ni, Texa A&M University, U.S.A, The MAerican Statistician, April 2024

Part
1. Getting familiar with torch
1. Overview
2. On torch, and how to
get it
3. Tensors
4. Autograd
5. Function minimization with autograd
6. A
neural network from scratch
7. Modules
8. Optimizers
9. Loss functions
10.
Function minimization with L-BFGS
11. Modularizing the neural network Part
2.
Deep learning with torch
12. Overview
13. Loading data
14. Training with luz
15. A first go at image classification
16. Making models generalize
17.
Speeding up training
18. Image classification, take two: Improving
performance
19. Image segmentation
20. Tabular data
21. Time series
22. Audio
classification Part
3. Other things to do with torch: Matrices, Fourier
Transform, and Wavelets
23. Overview
24. Matrix computations: Least-squares
problems
25. Matrix computations: Convolution
26. Exploring the Discrete
Fourier Transform (DFT)
27. The Fast Fourier Transform (FFT)
28. Wavelets
Sigrid Keydana is an Applied Researcher at Posit (formerly RStudio, PBC). She has a background in the humanities, psychology, and information technology, and is passionate about explaining complex concepts in a concepts-first, comprehensible way.