Atjaunināt sīkdatņu piekrišanu

E-grāmata: Deep Neural Networks-Enabled Intelligent Fault Diagnosis of Mechanical Systems

  • Formāts: 216 pages
  • Izdošanas datums: 06-Jun-2024
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781040026595
  • Formāts - PDF+DRM
  • Cena: 102,68 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 216 pages
  • Izdošanas datums: 06-Jun-2024
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781040026595

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The book aims to highlight the potential of Deep Learning (DL)-enabled methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.

The authors first introduce basic applications of DL-enabled IFD, including auto-encoders, deep belief networks, and convolutional neural networks. Advanced topics of DL-enabled IFD are also explored, such as data augmentation, multi-sensor fusion, unsupervised deep transfer learning, neural architecture search, self-supervised learning, and reinforcement learning. Aiming to revolutionise the nature of IFD, the book contributes to improved efficiency, safety and reliability of mechanical systems in various industrial domains.

The book will appeal to academic researchers, practitioners, and students in the fields of intelligent fault diagnosis, prognostics and health management, and deep learning.



The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.

1:Introduction and Background Part I: Basic applications of deep learning enabled Intelligent Fault Diagnosis 2:Auto-encoders for Intelligent Fault Diagnosis 3:Deep Belief Networks for Intelligent Fault Diagnosis 4:Convolutional Neural Networks for Intelligent Fault Diagnosis Part II: advanced topics of deep learning enabled Intelligent Fault Diagnosis 5:Data Augmentation for Intelligent Fault Diagnosis 6:Multi-sensor Fusion for Intelligent Fault Diagnosis 7: Unsupervised Deep Transfer Learning for Intelligent Fault Diagnosis 8: Neural Architecture Search for Intelligent Fault Diagnosis 9: Self-Supervised Learning (SSF) for Intelligent Fault Diagnosis 10: Reinforcement Learning for Intelligent Fault Diagnosis

Ruqiang Yan is a professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include data analytics, AI, and energy-efficient sensing and sensor networks for the condition monitoring and health diagnosis of large-scale, complex, dynamical systems.

Zhibin Zhao is an assistant professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include sparse signal processing and machine learning, especially deep learning for machine fault detection, diagnosis, and prognosis.